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Executive summary  
 
Objective 
This project explored the potential of utilising and integrating vehicle location and telematics data from 
connected vehicles (and bicycles) GPS and gyroscope data, alongside traditional sensors, for modern 
traffic management systems. The primary goal is to investigate opportunities to enhance traffic safety, 
efficiency, and environmental sustainability by utilising new and emerging telematics data, developing 
advanced methodologies, identifying new use cases, and deriving actionable insights. The study also 
investigated surrogate safety measures (SSMs) based on bicycle movement and risk data for proactive 
traffic management interventions. 

Methodology 
The methodology adopted in this project involved a comprehensive multi-stage framework that included 
data fusion and integration, exploratory analysis, penetration measurements, and advanced analytics 
techniques, such as simulation, optimisation, and machine learning models. The project methodology 
initiates with the integration of high-resolution Connected Vehicle (CV) data with existing traffic sensors 
(SCATS), demonstrating unprecedented coverage of traffic dynamics and delay information at mid-blocks 
and intersections. The proposed data fusion boosts the penetration rates of connected vehicle trajectory 
data which is originally available from 3-5% on average in Melbourne metropolitan area and match it up to 
all (100%) vehicles registered by the SCATS loop detectors at signalised intersections. This information 
was then used in prototype models for signal optimisation, priority for public transport and vulnerable road 
users, and precise estimates of safety risks and emissions.    

Advanced analytics methods, including sequential clustering, deep reinforcement learning (DRL), 
surrogate safety measures, computer vision models, and physics-informed neural networks (PINNs), were 
employed for various objectives in this project. These methods were used to estimate and classify traffic 
states, optimise signal control, predict traffic safety conflicts, formulate bicycle safety proxy measures, 
explore driving style variability, and estimate emissions. The project also included the development of a 
prototype visualisation dashboard for real-time traffic monitoring and decision-making. 

 
Key findings 
 

1. Intersection efficiency, multimodality, and safety: 
o Deep Reinforcement Learning models, enhanced with high-resolution connected vehicle 

data, outperformed traditional signal control methods in reducing average travel times for 
“vehicles” and queue lengths by up to 10-15%. 

o With a focus on throughput of individuals (using all modes of transport) instead of 
throughputs of cars-only at signalised intersections, the signal priority models developed 
for pedestrian and public transport vehicles leads to up to 5-10% increased throughput 
for individuals 

o Safe signal models demonstrated opportunities for including safety objectives in green-
time control. An enhanced computer vision model significantly improved conflict 
prediction accuracy. 

2. Insights into driving behaviour and network performance: 
o Distinct driving styles and behaviours were identified at intersections, varying based on 

vehicle type, signal phase dynamics, and time of day. This is unprecedented information 
offering significant opportunity for interventions.  

o A prototype visualisation dashboard was developed to facilitate real-time traffic 
monitoring and travel time reliability analysis. 

3. Bicycle safety and Surrogate Safety Measures: 
o Bicycle-involved crashes are more frequent at intersections (59%) compared to mid-block 

segments (41%). 
o Harsh braking events were concentrated in central metropolitan areas, particularly 

around intersections and cycling paths. 
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o Harsh braking and swerving events recorded by gyroscope sensors were strong indicators 
of potential crash sites. 

o Gyroscopic data revealed significant variations in road surface quality, crucial for targeting 
maintenance and identifying high-risk locations. 

o Surrogate safety measures effectively identified hotspots underrepresented by police-
reported crash data. 

4. Bicycle flow efficiency:  
o Popular cycling routes remain consistent regardless of road type, but dedicated bike 

lanes increase overall cyclist flow, suggesting infrastructure improvements could boost 
cycling rates. 

o Cyclists face longer delays and lower speeds at major intersections and in the city centre. 
Dedicated bike paths improve speed, highlighting the benefits of segregated 
infrastructure. 

o Roads shared with cars show more speed reductions, especially in central areas, due to 
traffic signals and lack of dedicated bike lanes. This reduction can be linked to longer 
waiting times at intersections, car-oriented traffic signals, and a lower prevalence of 
dedicated bike lanes.  

o Five cyclist clusters are identified using unsupervised machine learning. This includes, 
Suburban Commuters, Daily Cyclists, Leisure Cyclists, Most Delayed Cyclists, and 
Fastest Cyclists clusters.  

5. Emission estimation: 
o Real trajectory data captures emission intensity and variability more accurately than 

simulation methods. 
o The results show that fluctuating traffic congestion leads to variable emissions. 

Considering variable congestion and flow dynamics is crucial for estimating emissions 
accurately. 

o Both emission intensity and variability are higher during peak hours on weekend and 
weekdays.  

o Peak emissions may start far-distant upstream of intersections, decreasing as vehicles 
slow down approaching intersections or queue ends.  

o Increasing EV compositions in the vehicle fleet significantly reduces emissions, with 
higher EV percentages yielding greater emission reductions. 

o Emissions per vehicle are lower during rush hours due to reduced speeds and 
acceleration but increase during off-peak hours when vehicles travel faster. This suggests 
that effective speed management can further reduce emissions  

o Despite lower emissions per vehicle during peak hours, overall emissions per meter are 
higher due to increased traffic volume and congestion.  

o Findings suggest that combining effective demand and speed management strategies 
with increased EV adoption provides an optimal solution for minimising emissions. 

6. Movement data and insights: 
o Higher penetration rates of GPS-equipped vehicles provided broader data 

representativeness for data fusion applications.  
o The proposed Residual Physics-Informed Neural Network (Res-PINN) model significantly 

improved traffic state estimation using limited connected vehicle data. 
o Transfer learning techniques enhanced the model's performance, resulting in lower error 

rates and more accurate understanding of traffic conditions. 
 

Finally, the project successfully demonstrated the potential of integrating multi-source big data for 
advanced traffic management applications. The findings highlight significant improvements in traffic 
efficiency, safety, and environmental sustainability possible through the use of connected vehicle data, 
telematic data from bicycles, and other datasets. The methodologies developed provide a robust 
framework for future research and practical applications, offering substantial benefits for urban mobility 
and traffic management systems.  
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1 Introduction  

Current traffic operations and management practices primarily rely on traditional fixed-location sensors, 
including legacy loop detectors, and costly CCTV camera systems. However, the rapidly emerging 
transport technologies such as connected vehicles, communication technology, vehicle telematics, and 
smart signal control systems have created unprecedented opportunities for new methods in traffic 
management and control. This project aims to explore the potential of connected vehicle location data 
and telematics in conjunction with other available data sources, for safer and more efficient traffic.  

Connected vehicles (CV) have the capability to communicate and share near real-time and real-time 
location/trajectory information and serve as probe vehicles for traffic data collection at scale. They are 
expected to play a pivotal role in the future of transport (de Luca et al.) and Intelligent Transportation 
Systems (Coppola & Morisio, 2016; Milkovits et al.). According to a comprehensive literature review 
(reported in Stage 1 of this project), the emerging big data from vehicle telematics systems has the 
potential to revolutionise traffic management in various aspects, including: 

• Producing fine resolution vehicle trajectory and delay information at scale (Mehran et al., 2012; 
Wan et al., 2016)  

• Continuous traffic state information and volume estimation (Sunderrajan et al., 2016; Yuan et al., 
2021) 

• Opportunities for more efficient intersection management (Liang et al., 2023; Y. Zhao et al., 2019; 
Zheng & Liu, 2017)  

• New traffic network insights for freeway management (Wang et al., 2020)  
• Signal priority controls and management for emergency vehicles (Goodall et al., 2016; He et al., 

2012) 
• Better understanding of traffic safety and management (J. Liu & Khattak, 2016). 

In this project we investigated the opportunities related to car/truck telematics data with a focus on 
practical outcomes, and identification of immediate potentials for the Australian major metropolitan 
traffic operations. However, the scope was not limited to cars/trucks only. Promoting and supporting 
active modes of transport such as bicycles and scooters while ensuring their safety are bold and emerging 
transport and mobility goals, globally. We have identified opportunities for improving not only traffic flow 
efficiency but also safety and efficiency for other modes of transport (pedestrians, public transport and 
micromobility). In addition to car/truck telematics data, this project also utilises large-scale bicycle GPS 
and gyroscope data, which hold significant potential for improving both traffic safety and efficiency 
particularly for vulnerable road users (VRU). 

To test all methodological opportunities for using the vehicle location data and identify practical use 
cases, several methods are developed and tested in this project to leverage the potentials of movement 
and gyroscopic data from connected vehicles and bicycles in traffic management. These aspects include: 

• Trajectory reconstruction, data fusion and automation.  
• Intersection safety and efficiency optimisation (including occupancy-based priority and multi-

modality). 
• Producing insights from network and freeway exploratory analyses.  
• Developing proactive road safety measures for vulnerable road users.  
• Producing network level insights into bicycle efficiency and movement patterns.  
• Traffic state classification and congestion estimation. 
• Deducting driving patterns and behaviours on major arterials. 
• Emission estimation using reconstructed trajectories. 

This report summarises our efforts in testing these methods and provides a comprehensive investigation 
for effectively utilising and integrating vehicle and bicycle location and gyroscope data into modern traffic 
management systems and practices.  
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2 Project Scope and Report Outline 

While telematics data provides unprecedented spatial and temporal resolutions, accuracy, and 
scalability, it is currently only available from a limited number of vehicles and bicycles. To fully exploit its 
potential and unlock novel applications in traffic management, researchers often integrate this data with 
other sources. However, this integration is challenging due to differences in data characteristics, formats, 
strengths, and limitations. 

This research has developed a structured framework to utilise multi-source data for traffic management. 
The framework comprises distinct components, steps, and procedures to address project objectives and 
scope within three traffic management domains: intersection management, road safety management, and 
network and freeway management. 

 
Figure 2.1: Structured framework for using multi-source data in traffic management and control 

The framework is organized into three main tasks, each consisting of various parts and key elements 
essential for comprehensive traffic data management and application in real-world traffic systems. 

Stage 1: Literature Review and Stakeholder Interviews  
The foundation of the framework involves an extensive review of existing research literature to examine 
data, methods, use cases, and traffic controls (refer to literature review report). This step has been vital for 
gaining a deep understanding of current traffic management practices, identifying gaps in knowledge, and 
determining the most effective practices and methodologies to be incorporated into this framework.  

In addition, we conducted a comprehensive set of interviews and discussions with groups of stakeholders 
across government and ITS industry in Australia, in order to understand their key areas of focus and interest 
in using existing or emerging data sources and technology to support existing and emerging network 
management activities, and the opportunities and challenges associated with this integration. Major 
findings form these interviews are also reported back in another report from stage 1 (stakeholders 
interviews report). 

Stage 2: Big Data for Understanding Traffic  
This stage is dedicated to conducting an extensive analysis of movement data and its crucial role in 
understanding traffic dynamics. This phase starts with a data fusion practice and serves as the foundation 
for the subsequent.  
 
In this task, a comprehensive investigation is carried out on various movement datasets, such as SCATS 
signal time data (Sydney Coordinated Adaptive Traffic System), CAVI (Cooperative and Automated Vehicle 
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Initiative) trajectories, CompassIOT data (connected vehicle data containing location, speed, 
acceleration, and gyroscopic information), Traffic Counts from loop detectors, bicycle telematic data, and 
network georeferenced maps and infrastructure data. An automated data processing framework is 
developed to ensure the readiness of the data for utilisation by traffic management algorithms. This stage 
encompasses data collection, cleansing, fusion and transformation stages, all of which are essential for 
enabling the seamless application of traffic management algorithms. The subsequence steps in this stage 
include: 

• Conducting exploratory analysis to understand traffic trends, patterns, and trajectory insights 
from connected vehicle data and other data sources (presented in Section 3) 

• Calculating penetration rates that reveal the proportion of connected vehicles to overall traffic 
(Section 3.2) 

• Computing intersection turn volumes to examine traffic flows, and the volume of traffic traversing 
intersection turns as well as producing turn speed profiles (Section 3.3) 

• Crash prediction modelling using multi-source data (see Section 3.4) 
• Data fusion between traffic trajectories and vehicle counts data upstream of intersections 

(Section 4) 

Stage 3: Multi-source Data for Traffic Management and Control  
This stage focuses on utilising the reconstructed trajectories form connected vehicle data and traffic 
counts in different use cases of traffic management. The primary objective is to test, evaluate and apply 
the processed data to enhance traffic management and control. 

The reconstructed vehicle trajectories, derived from a combination of limited connected vehicle data and 
traffic count data, are utilised to model various components of the traffic management system, 
including: 

• Intersection signal control management and multi-modal traffic operations at intersections 
(Section 5) 

• Micromobility management, including bicycle safety and efficiency (Section 6) 
• Computer vision for traffic safety (Section 7) 
• Network and freeway management (Sections 8-9) 
• Emission estimation (Sections 10) 

This stage is the main focus of this project and is essential in producing evidence-based knowledge of 
new opportunities to utilise the reconstructed trajectories for better traffic management systems. 
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3 Exploratory analysis of datasets 

This section presents telematic data from various sources, along with insights and descriptive statistics. 
This is followed by an estimation of the penetration rate of connected vehicles and their trends over time 
and space.  

Furthermore, a linear regression model is formulated to combine the risk measures from connected 
vehicle data with actual historical crash data in the state of Victoria, allowing for an estimation of their 
correlation and understanding of the explanatory power of connected data for understanding crash risks.  

Finally, the application is extended to analyse the distribution of turn volumes and speed profiles at 
intersections. The key findings are briefly reviewed in this section; for a detailed report of results, please 
refer to the interim report. 

3.1 Vehicle position data   
Telematics data, encompassing telecommunications and informatics within the automotive industry, 
provides a critical lens through which we can analyse and understand driver performance. This type of 
data, particularly when it includes metrics like acceleration/deceleration and gyroscopic measurements, 
offers a wealth of information for understanding vehicle dynamics and driver behaviour, albeit not in real-
time. The gyroscopic information provides insights into vehicle movements and stability, contributing 
significantly to areas such as safety analysis and behavioural studies. 
 
Due to the limited market penetration of connected vehicles (CV) and their associated data, researchers 
have explored data integration methods to leverage the high resolution, wider coverage, and rich 
information provided by CV data. These integration methods, which combine CV data with traditional 
roadside sensors, infrastructure/network information, and maps, have proven to be cost-effective, real-
time alternatives to costly video systems and fixed/non-mobile sensors. One significant use case of this 
data integration is the reconstruction of complete trajectories for non-connected vehicles using the rich 
trajectory data from CV.  

 
Figure 3.1. Visualisation of CAVI data.  
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Figure 3.2: CompassIOT coverage in The Greater Melbourne Area 

In this project, we extensively examined two datasets from connected vehicles: CAVI data, an initiative 
undertaken by the Queensland Government (Figure 3.1), and CompassIOT telematics data (Figure 3.2), 
which comes from a private aggregator of connected vehicle data. Both datasets provide detailed 
information on vehicle movement and trajectories, including additional features that traditional sensors 
and data collection methods cannot capture, such as acceleration and gyroscopic information. However, 
each dataset has its own advantages and limitations, making them suitable for different traffic 
management use cases and applications. 

The CAVI dataset offers precise insights, including speed and altitude values, making it suitable for 
selection based on these attributes. With relatively higher spatiotemporal resolution, CAVI excels in 
capturing nuanced vehicle movements, such as deceleration and acceleration when navigating 
roundabouts, intersections and uphill and downhill roads, providing continuous motion records. However, 
its coverage is limited to a specific number of vehicles participating in the initiative (see Figure 3.3). 
Additionally, the CAVI data includes altitude values, which can be integrated into a 3D map, allowing for 
more detailed analysis of road conditions, including uphill and downhill sections (see Figure 3.4). 

 
Figure 3.3: The penetration information of station ID QCVCWA240344 which mainly covers the Brisbane 

area, the speed value is in cm/s. 
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Figure 3.4: 3D visualisation result of altitude variation in one trip from the CAVI data, an obvious uphill 
and downhill situation is presented  

On the other hand, CompassIOT data, as a distinguished source in the field of telematics, provides 
comprehensive datasets that include gyroscopic data in addition to acceleration information. This data 
offers valuable insights into vehicle movement, stability, and factors relevant to safety analysis, 
behavioural studies, traffic flow, and congestion management. The inclusion of acceleration data allows 
for the analysis of speed variations and driving patterns, which is crucial for driver safety assessments and 
fleet management efficiency (see Figure 3.5). Similarly, gyroscopic data provides understanding of 
vehicular orientation and stability, key factors in studying and improving vehicle handling and dynamics 
(see Table 3.1 for a descriptive summary of the data features and compositions). 
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Figure 3.5: Distribution (left), boxplot (middle), Boxplot without outliers (right) for X Acceleration, 

Y Acceleration, Yaw, Pitch and Roll 

Table 3.1: CompassIOT descriptive summary table 
 With Location, 

Timestamp, Speed 
+ X Acc and  

Y Acc 
+ X Acc and Y Acc 
+ Roll, Yaw, Pitch 

Number of Trajectories 

All 41,280,155 3,411,560 (8.26%) 1,095,603 (2.65%) 
Car 38,393,085 (93.00%) 1,674,829 (4.06%) 1,095,449 (2.65%) 

HCV 2,174,375 (5.27%) 1,032,798 (2.50%) 123 (<0.01%) 
LCV 712,695 (1.73%) 703,933 (1.71%) 26 (<0.01%) 

Total Points 1,812,9198,028 698,674,040 60,384,036 
Total Travel Distance 

(Muthugama et al.) 
292,059,273 79,829,803 22,622,490 

 
While both datasets serve as reliable sources of information on vehicle movement and trajectories, CAVI 
data provides high spatial and temporal resolutions with a high transmission frequency, enabling the 
generation of smooth and sufficient data points for individual trajectories. This makes it an unprecedented 
source for advanced traffic applications in various domains, including road safety intersection 
management and efficiency, network and freeway congestion management, and more.  

CompassIOT data, on the other hand, covers significantly large networks for longer periods. It also 
provides gyroscopic information that is crucial for traffic safety applications. Additionally, since the 
CompassIOT data comes from public connected cars, it has much higher penetration and coverage. 
Therefore, in the subsequent sub-section, we provide insights from penetration tests and other analyses 
conducted on CompassIOT data. 

3.2 Penetration measures 
Penetration rate, in the context of probe vehicle data, refers to the proportion of vehicles within a given 
population that are equipped with GPS devices with location information available in our data. This metric 
is pivotal in assessing the extent to which such technology is adopted and utilised in a specific region or 
demographic. Calculating the penetration rate for telematics data is crucial for several reasons. Primarily, 
it aids in evaluating the representativeness of the data collected. A high penetration rate implies that the 
data encompasses a broader segment of the vehicle population, thereby offering a more comprehensive 
and accurate depiction of trends, behaviours, and preferences. This, in turn, facilitates more informed 
decision-making in areas such as traffic management, urban planning, and the development of automotive 
technologies. Additionally, understanding penetration rates assists stakeholders in identifying potential 
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markets for expansion and assessing the effectiveness of current telematics solutions. The data from 
CompassIOT is derived exclusively from public connected cars. In the following sections, we present 
insights gathered through penetration tests and other analyses conducted specifically on CompassIOT 
data. 

In order to facilitate accurate and meaningful rate calculations, we have undertaken comprehensive data 
preparation steps, leveraging various sources of information. These preparatory measures ensure the 
integrity and reliability of the data utilised in our rate calculation process. Below, we provide a summary 
overview of the data sources and the steps taken to ensure data accuracy: 

1. Vic's Road Corridors Shapefile (City of Melbourne): 
2. Traffic Signal Volume Data (SCATS) - Site and Detector Information: 
3. Homogeneous Traffic Volume Network Data (HTVS): 
4. VKT Data from the Department of Transport: 

 
 

Figure 3.6: Processing loop detector data (only values from the first detector group entering the 
intersection is selected). 

  
To establish the penetration rate, we have devised a formula to calculate it as follows: 

  

This formula quantifies the penetration rate, considering the unique vehicle identifiers within specific time 
intervals and the overall traffic volume (from loop detectors) over the course of a full day.  

We have explored and tested four distinct methods for calculating the penetration rate in our study. Each 
method has its own set of advantages and drawbacks, which we have carefully considered to ensure the 
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most accurate and reliable results. Out of these methods (Method 3) demonstrates a notable proficiency 
in maximising both the capture rate and the accuracy of data (other methods are presented in the interim 
report). In this method, we manually draw extended polygons for each SCATS (Sydney Coordinated 
Adaptive Traffic System) site (Figure 3.7). The goal is to maximise both the capture rate and accuracy of 
data. By strategically expanding the polygons from entry routes to the nearest exit routes, we aim to include 
all relevant vehicle movement within the defined areas. This approach ensures a high precision 
penetration rate estimation. 

 

 
  

 
Figure 3.7: Manually drawn polygon at SCATS Site 3380 (HODDLE STREET / EASTERN FREEWAY)  

  
A comprehensive analysis has been conducted to determine the penetration rates of CompassIOT data at 
different SCATS (Sydney Coordinated Adaptive Traffic System) sites across the greater Melbourne area for 
the year 2022. This analysis was performed utilising Method 3, and the results are categorised into four 
distinct color-coded groups for ease of interpretation: 

• Green (< 1.00%): These sites exhibit penetration rates below 1%. 
• Yellow (1.00 - 2.50%): This category represents sites with penetration rates between 1.00% 

and 2.50%. 
• Orange (2.50 – 5.00%): Sites in this group have penetration rates ranging from 2.50% to 5.00%. 
• Red (> 5.00%): These locations experience penetration rates exceeding 5%. 
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Figure 3.8: Overall Penetration Rate of CompassIOT data in 2022 (Method 3)  

On average, the penetration rate across these sites is approximately 2%. Notably, SCATS site 4489, located 
at the intersection of Westgate Freeway and Power Street, recorded the lowest penetration rate at 1.38%. 
In contrast, the highest penetration rate was observed at SCATS site 2880, situated at Westgate 
Freeway/Williamstown, with a significant rate of 7.51%. Furthermore, an examination of major 
thoroughfares such as Hoddle Street reveals a varying penetration rate, fluctuating between 2.2% to 4.8% 
along the length of the road. 

The examination of the monthly penetration rates of CompassIOT data, as illustrated in Figure 3.9, reveals 
a noteworthy trend. There is a consistent month-over-month increase in the penetration rate. Specifically, 
for the selected SCATS sites, there is an observable rise in penetration rates ranging from 50% to 200% 
over the span of one year. This trend is a positive indicator, suggesting a significant augmentation in data 
acquisition over time. 

For instance, Figure 3.9 demonstrates this upward trajectory using SCATS Site 3380 (Hoddle 
Street/Johnston Street) as a case study. The data shows an increase in the penetration rate from 
approximately 2% in January 2022 to 5% by December 2022. This growth not only highlights the expanding 
reach of CompassIOT data but also underscores the potential for more robust and comprehensive data 
analysis in the future. 
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Figure 3.9: Penetration rate for 2 different SCATS sites by month 

We have also estimated penetration rates across various suburbs. The dataset spanned a fortnight, from 
8th to 23rd May 2022, facilitating the calculation of daily average penetration rates. The illustrative 
representation in Figure 3.10 elucidates the penetration rates across homogenous traffic flows, while 
Figure 3.11 distinctly categorises the data by suburbs. The colour-coded scheme in the figures indicates 
penetration rates as follows: rates between 0 to 0.5% are marked in red, 0.5 to 1.75% in orange, and rates 
above 1.75% are represented in green. 

A noteworthy observation from Figure 3.10 and Figure 3.11 is the pronouncedly higher penetration rates in 
the south-eastern areas. This phenomenon can be attributed to affluent suburbs such as Toorak and 
Balwyn. These suburbs are characterised by a higher prevalence of newer and luxurious vehicles, which 
are more likely to be equipped with telematics data systems. The average penetration rate in these suburbs 
surpasses that of other areas, typically observed to be below 1%. This disparity underscores the potential 
influence of socio-economic factors on the adoption and integration of advanced vehicular technologies 
in different urban areas. 

Utilising the VicRoad Corridors Shapefile from Data Vic, SCATS traffic volume data, Homogeneous Traffic 
Volume Network data, and VKT data from the Department of Transport, we have established a robust 
framework for estimating penetration rate measures. Our findings reveal a varied penetration rate across 
SCATS sites, with an average rate of approximately 2%, and a notable month-over-month increase, 
indicating a growing adoption of telematics systems. Moreover, the analysis of homogenous traffic flows 
and the association of these with different suburbs highlighted a higher penetration rate in affluent areas, 
suggesting socio-economic factors may play a significant role in the uptake of advanced vehicular 
technologies. This study not only provides a detailed understanding of current telematics adoption but 
also paves the way for enhanced traffic management and road safety strategies, ultimately contributing to 
the goal of achieving a more sustainable urban transport environment. 
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Figure 3.10: Penetration Rate by Homogenous Traffic Flow 

 
Figure 3.11: Penetration Rate by Suburb 

3.3 Intersection turns volumes and speed profiles  

The analysis of intersection turn volumes and speed profiles constitutes a critical component in the 
comprehensive evaluation of telematics data. This section aims to elucidate the patterns and 
characteristics of vehicular movements at intersections, a pivotal aspect in understanding traffic 
dynamics. The study of turn volumes offers insights into traffic flow distribution, highlighting the 
predominance of certain manoeuvres over others at specific junctions. Meanwhile, the examination of 
speed profiles during these turns provides a nuanced understanding of driver behaviour and vehicular 
performance under varying traffic conditions, please refer to interim report for detailed procedures. 

The data presented in Table 3.2 shows the vehicular movement patterns at a specific intersection 
throughout the year 2022. A thorough analysis of this data reveals a predominant trend of vehicles 
proceeding straight, followed by a significant number of left turns and a comparatively smaller volume of 
right turns. Notably, Figure 3.12 confirms the absence of U-turns at this junction. 

Table 3.2: Intersection Turn Volume within a 200-Meter Radius at Hoddle Street/Johnston Street 
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From/To S N W E 
S 0 113,823 4,160 15 
N 93,188 0 301 9,306 

W 1,354 3,437 0 22,834 
E 1,800 1,866 20,183 0 

 

 
Figure 3.12: Right Turn is not Allowed at Hoddle Street/Johnston Street 

The results obtained from our study provide a comprehensive understanding of vehicular movement 
patterns at intersection throughout the year 2022, as presented in Table 3.2.  

Moreover, our findings shed light on instances of non-compliance with traffic rules at some intersection. 
For instance, the data indicates several occurrences where drivers made right turns despite restrictions. 
This aspect of the study underscores the importance of monitoring and enforcing traffic regulations to 
ensure public safety and efficient traffic flow.  

In the data presented, a series of figures (Figure 3.13, Figure 3.14, Figure 3.15) portray the speed of vehicles 
as they approach an intersection (Punt Road / Toorak Road). These figures are helpful in understanding the 
dynamic behaviour of vehicles in proximity to intersections, a crucial aspect in the study of road safety and 
traffic flow dynamics. 

Upon examination of these speed profiles, a notable pattern emerges, characterised by a distinct 'V' shape 
in the speed-space profile of each vehicle. This pattern is indicative of a reduction in speed as the vehicles 
approach the intersection, followed by a subsequent acceleration upon leaving the intersection. This 
deceleration-acceleration cycle is a clear reflection of the drivers' response to the intersection – typically 
involving braking and then reaccelerating once the intersection is navigated. 

The 'V' shape curve is particularly significant as it encapsulates several critical aspects of vehicular motion 
near intersections: 

• Braking Phase: The initial downward slope of the 'V' represents the braking action taken by 
drivers. This phase is critical for understanding the drivers' perception-reaction time and their 
response to potential hazards or traffic control devices at the intersection. 

• Lowest Speed Point: The vertex of the 'V' indicates the lowest speed reached by the vehicles, 
usually at or near the intersection. This point is significant for assessing the effectiveness of traffic 
signals, stop signs, and other control measures in ensuring safe speeds at intersections. 

• Acceleration Phase: The upward slope of the 'V' depicts the acceleration phase, where vehicles 
increase their speed after passing through the intersection. This phase offers insights into the 
post-intersection driving behaviour and the efficiency (or lack thereof) of traffic flow downstream. 
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Figure 3.13: Go through speeds at Punt Road / Toorak Road 
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Figure 3.14: Right turn speeds at Punt Road / Toorak Road 
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Figure 3.15: Left turn speeds at Punt Road / Toorak Road 

 
As in Figure 3.16, three predominant driving behaviours have been identified when applying a clustering 
model to speed profiles. The first trend showcases drivers who decelerate upon approaching the 
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intersection, followed by acceleration upon exiting. This pattern likely indicates a response to traffic signals 
or pedestrian crossings, reflecting a cautious approach. Specifically, these cases are classified under 
Cluster 0, which consists of drivers approaching a red light, resulting in a low speed before 200 meters. The 
second group represents drivers who maintain a consistently lower average speed when approaching the 
intersection, followed by a noticeable increase in speed after exiting. These cases fall under Cluster 1, 
which includes drivers approaching a green or yellow light. The third group is characterized by a 
consistently lower speed average both while approaching and exiting the intersection. These drivers are 
part of Cluster 2, which consists of drivers seeing queues ahead, with the queue continuing after the 
intersection, perhaps indicating a downstream bottleneck.  
 
The segmentation of vehicle movements into 40-meter bins, while effective in simplifying the data, may 
overlook finer nuances in driving behaviour that could occur within these segments. Furthermore, the 
clustering algorithm, whilst robust, may oversimplify the diversity of driving patterns, particularly in 
scenarios where driver behaviour does not conform neatly to one of the identified trends. For future work, 
an exciting avenue for exploration would involve the integration of traffic light conditions into the analysis. 
Specifically, investigating driver decisions in the 'dilemma zone' the area in which a driver must choose 
between stopping for a yellow light or proceeding through the intersection could yield valuable insights 
(Figure 3.17).  

 

 
Figure 3.16: Boxplot of 3 different speed clusters 

 
Figure 3.17: Scatterplot of Speed vs Distance (meter) from Intersection Entering Point 
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3.4 Crash Near-miss Data 

This section presents an analytical overview of road safety, focusing on telematics data fusion with crash 
data collected from 2000 to 2020. Utilising advanced statistical techniques, we aim to quantify crash risks 
and identify key predictors of road accidents. The methodology incorporates three regression models: 
Linear Regression, Poisson Regression, and Negative Binomial Regression. These models are employed to 
analyse various predictors such as vehicle speed, acceleration characteristics (X_acc, Y_acc), angular 
parameters (pitch, roll, yaw), and counts of harsh driving events (harsh deceleration, acceleration, and 
swerving). Additionally, average speed within different speed zones is considered. The data is further 
enhanced by incorporating information from CompassIOT for the year 2022. 

In examining the relationship between historical crash data (2000-2020) and recent telematics data from 
CompassIOT (2022), it is important to address the non-overlapping timelines. Despite this, we operate 
under the assumption that accident hotspots remain consistent over time. To support this hypothesis, a 
circular plot was generated, averaging the crash data within each unit grid on the map for the period from 
2015 to 2020. The rationale for selecting data commencing in 2015, as opposed to 2000, is to mitigate the 
potential impact of significant changes in road infrastructure or usage over a prolonged period. In Figure 
3.20, red points indicate areas where an average of three or more accidents occurred per year within a five-
year span. Conversely, green points signify locations with fewer incidents. This visualisation reveals 
several areas where accidents have consistently occurred over the years. This pattern lends credence to 
the assumption that historical data can provide valuable insights into current and future accident 
hotspots. Consequently, this analysis may enhance the predictive accuracy of our model in identifying 
potential areas of concern based on historical trends. 

In the mapping process, we divided the geographical area into grids, adopting an n x n configuration. The 
dimensions of these grids varied, comprising three distinct sizes: 100 metres by 100 metres, 200 metres 
by 200 metres, and 250 metres by 250 metres. This detailed segmentation is graphically represented in 
Figure 3.18. Each grid unit within this spatial arrangement was assigned a specific value, correlating to the 
number of traffic collisions recorded within that segment from the year 2000 to 2020. This methodological 
approach allowed for a localised analysis of crash incidences across different areas. 

In Figure 3.19, we present a distribution plot which visualises the frequency of accidents in each of these 
grid units. A notable observation from this plot is the right-skewed nature of the distribution. This skewness 
predominantly indicates that a significant proportion of the grid units had either no recorded crashes or a 
very minimal number of incidents. 

Figure 3.18: Map coded into an n×n meter grid 
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Figure 3.19: The Distribution of accident for different grid sizes 
 
We utilised the Python package Statsmodels to develop a comprehensive regression model. This model 
was precisely constructed with a suite of engineered features, primarily focusing on vehicular dynamics 
and driving patterns. The predictors encompassed in our model include: 

• Speed Metrics: These were analysed across various percentiles – average, 85th, 90th, 95th, and 99th 
– to capture a broad range of speed behaviours. 

• Acceleration and Gyroscopic Features: We incorporated both X-axis and Y-axis accelerations, as 
well as pitch, roll, and yaw measurements. Each of these features was evaluated at numerous 
percentiles (average, 85th, 90th, 95th, 99th, 15th, 10th, 5th, 1st), allowing us to gain insights into both 
typical and extreme vehicular movements. 

• Event Counts: The model accounted for the frequency of harsh deceleration events (acceleration < -
0.4g), harsh acceleration events (acceleration > 0.4g), and harsh swerving events (swerving > 0.3g). 

 

 

Figure 3.20: Hotspots in The Greater Melbourne Area from 2015 to 2020 

We employed a baseline Poisson regression approach within a 100m x 100m grid setting and expanded to 
other models as illustrated in Table 3.3, see interim report for more details.  In this comparative study, 
conducted within a 250m x 250m grid setting, the Poisson regression model emerged as the most 
efficacious, evidenced by an R-squared value of 0.9989. This result underscores the suitability of the 
telematics data to be used as surrogate measures for detecting risky zones and predicting crash risk areas. 
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Table 3.3: Comparative summary of performance across different models 

Grid Size Model R-squared AIC 
  

Baseline With Feature 
Selection Stepwise Baseline 

With Feature 
Selection 

 
Stepwise 

100 * 100 
meters 

Linear 
Regression 0.4743 0.4390 0.4738 256846.93 258490.68 256828.16 

 Poisson 
Regression 0.9321 0.4390 N/A 215909.33 240191.17 N/A 

 Negative-
Binomial 
Regression 

0.3902 0.3488 N/A 182226.68 184924.30 N/A 

200 * 200 
meters 

Linear 
Regression 0.6345 0.5996 0.6330 183668.74 184878.10 183681.85 

 Poisson 
Regression 0.9943 0.5996 N/A 180477.22 208783.25 N/A 

 Negative-
Binomial 
Regression 

0.5036 0.4640 N/A 133397.99 135409.55 N/A 

250 * 250 
meters 

Linear 
Regression 0.7160 0.6858 0.7136 157534.53 158509.06 157574.93 

 Poisson 
Regression 0.9989 0.6858 N/A 166488.49 194071.53 N/A 

 Negative-
Binomial 
Regression 

0.5458 0.5029 N/A 116061.03 118010.40 N/A 

 
 
3.5 Summary of key findings 

Vehicle position data 
1. Telematics data provides critical insights into vehicle dynamics and driver behaviour, particularly 

through metrics like acceleration and gyroscopic measurements. 
2. CV datasets are for limited geographic coverage but store detailed vehicle movement. For 

example, the CompassIOT dataset includes 38,393,085 car trajectories, 2,174,375 heavy 
commercial vehicle (HCV) trajectories, and 712,695 light commercial vehicle (LCV) trajectories. 

3. CompassIOT covers larger networks for longer periods, with a total of 41,280,155 trajectories, 
including 1,674,829 car trajectories with acceleration data and 1,032,798 HCV trajectories with 
acceleration data. 

4. It also has higher penetration and coverage, making it valuable for traffic safety applications. The 
dataset includes 1,095,603 trajectories with complete gyroscopic data (X Acc, Y Acc, Roll, Yaw, 
Pitch). 

5. CAVI data, on the other hand, provides smooth and sufficient data points for individual 
trajectories due to its higher frequency. 

Penetration measures 
1. The penetration rate measures the proportion of vehicles equipped with GPS devices. Higher 

penetration rates imply broader data representativeness, aiding to more effective traffic 
management and control.  

2. Four methods tested, with Methods 3 and 4 showing superior performance. Method 3: Expanded 
polygons from entry routes to nearest exit routes, achieving high penetration rate and accuracy. 
Method 4: Used homogenous traffic flow polygons and VKT data for accurate penetration rate 
calculation. 

3. Average penetration rate across SCATS sites: approximately 2%. Lowest penetration rate: 1.38% 
at SCATS site 4489 (Westgate Freeway and Power Street). Highest penetration rate: 7.51% at 
SCATS site 2880 (Westgate Freeway/Williamstown). Penetration rate along Hoddle Street: 2.2% 
to 4.8%. 
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4. Consistent month-over-month increase in penetration rates. Example: SCATS Site 3380 (Hoddle 
Street/Johnston Street) penetration rate increased from ~2% in January 2022 to 5% by December 
2022. 

5. Higher penetration rates observed in affluent suburbs (e.g., Toorak, Balwyn) with rates above 
1.75%. Lower rates typically below 1% in other areas. 

6. Growing adoption of telematics systems indicated by increasing penetration rates. Socio-
economic factors appear to influence the adoption of advanced vehicular technologies, as 
evidenced by higher penetration rates in affluent areas. 

Speed profiles at intersection  
1. Driver Behaviour at Intersections: 

a. Speed-space profiles of vehicles approaching the intersection reveal a distinct 'V' shape 
pattern. 

b. This pattern indicates a typical deceleration as vehicles approach the intersection, 
followed by acceleration upon exiting. 

2. Identification of Driving Behaviours: 
a. Cluster 0: Drivers decelerate upon approaching the intersection, resulting in low speed 

before 200 meters, then speed up after exiting the intersection.  
b. Cluster 1: Drivers approach with variable speeds but maintain a lower average speed 

(green or yellow light) and then accelerate after exiting, indicating free flow downstream 
of intersection. 

c. Cluster 2: Drivers exhibit consistently lower speeds both while approaching and exiting, 
likely due to downstream congestion or navigating through complex intersections. 

Crash prediction modelling 
1. Models Used: Linear Regression, Poisson Regression, and Negative Binomial Regression were 

employed to analyse predictors of road accidents. 
2. Key Predictors: Important predictors included vehicle speed, acceleration characteristics, 

angular parameters (pitch, roll, yaw), and counts of harsh driving events (e.g., harsh 
deceleration, acceleration, and swerving). 

3. Incorporated recent telematics data from CompassIOT (2022) and historical crash data (2000-
2020) to quantify crash risks and identify key predictors of road accidents.  

4. Hotspot Analysis: Circular plot analysis from 2015 to 2020 supported the assumption that 
accident hotspots remain consistent over time, aiding predictive accuracy. 

5. Poisson Regression Performance: The Poisson regression model within a 250m x 250m grid 
setting emerged as the most effective, with an R-squared value of 0.9989, indicating its high 
suitability for capturing crash data nuances. 
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4 Reconstructing unobserved trajectories  

4.1 Background and Methodology  

Vehicle trajectories provide crucial insights into traffic patterns, aiding in various transport applications 
such as traffic condition estimation, flow modelling, signal optimisation, and emission estimation. 
However, capturing complete vehicle trajectories using traditional methods like video cameras or fixed 
sensors is often challenging due to high costs and limited coverage. 

To address these limitations, researchers have focused on reconstructing vehicle trajectories from partial 
data provided by existing sensors. This report builds on the work of Mehran et al. (2012) by exploring the 
integration of fixed and probe sensor data on signalised urban arterials to improve the accuracy of 
trajectory reconstruction and enhance the understanding of traffic dynamics in urban environments. 

The primary goal is to apply a data fusion framework to reconstruct connected vehicle trajectories on 
signalised urban arterials by: 

1. Data Integration: Combining information from fixed sensors and probe vehicles to enrich the 
dataset for more accurate trajectory reconstruction. 

2. Traffic Engineering Application: Using fundamental traffic engineering principles, including 
kinematic wave theory, to analyse shockwaves, queue propagation, and speed variations, and 
validate the real-world applicability of these models. 

3. Handling Vehicle Entry/Exit: Managing the complexities of vehicles entering and exiting specific 
road segments by applying a segment-by-segment approach. 

4. Validation: Ensuring the robustness of the methodology through validation against real-world 
data. 

5. Use Cases: Exploring practical applications of the reconstructed trajectories, such as travel time 
estimation, signal coordination, and emission monitoring. 

The methodology for reconstructing vehicle trajectories on signalised urban arterials is grounded in the 
kinematic wave theory, specifically the Lighthill-Whitham-Richards (LWR) model. This model describes 
the relationship between traffic flow, density, and time, providing a robust framework for analysing traffic 
dynamics. The following steps outline the detailed approach used in this study: 

1. Parameter Initialisation: 
a. Forward Wave Speed (u): This parameter represents the speed at which traffic flows 

forward. It is crucial to set this parameter accurately, as it directly influences the 
estimation of vehicle trajectories. 

b. Backward Wave Speed (w): This speed reflects how quickly traffic disruptions, like 
congestion, move backward through the traffic stream. Accurate estimation of 
backward wave speed is essential for identifying shockwaves and understanding queue 
dynamics. 

c. Jam Density (kj): This is the maximum density of vehicles that a road segment can 
accommodate. Setting the correct jam density is vital for predicting traffic conditions 
under congestion. 

d. Maximum Flow Rate (qmax): The highest volume of traffic that a road can handle per 
unit of time. This parameter is crucial for understanding the capacity of the road and is 
used to optimise the reconstruction process. 

e. Horizontal Distance (tstep) and Vertical Distance (sstep): These define the spatial 
and temporal resolution of the time-space matrix, ensuring accurate representation of 
vehicle movement over time and space. 
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2. Matrix Initialisation: 
A time-space matrix is created to represent the cumulative number of vehicles at each point in 
time and space. The matrix is populated with data from various sources: 

a. Traffic Volume Data: This data populates the initial state of the matrix, providing a 
baseline for vehicle counts at different points along the road. 

b. Signal Timing Data: Incorporating the timing of traffic signals helps to simulate how 
vehicles are influenced by red and green lights, crucial for realistic trajectory 
reconstruction, see Figure 4.1. The number of rows and columns are derived from tstep 
and sstep. Each array represents the cumulative number of vehicles passing through the 
time and space. if we are studying the trajectories passing a street of length 1000 meters 
and within 30 minutes, and if we set the tstep equal to 1, then we the matrix will have 
1800 columns representing the time steps and the number of rows will be calculated by 
dividing 1000 by sstep.  

c. Probe Trajectories: Data from connected vehicles is integrated into the matrix, 
enhancing the accuracy of the reconstructed trajectories. These trajectories provide 
reference points that guide the optimisation process. 

 

Figure 4.1: Matrix initialisation example 

3. Data Interpolation: 
To align the available data with the matrix, interpolation is performed. This step is essential to 
ensure that the data fits well within the matrix structure, particularly when the frequency of data 
collection varies. This process refines the data points, improving the accuracy of trajectory 
mapping. Figure 4.2 represents an example of the interpolation and reference trajectories 
mapping on the matrix. 
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Figure 4.2: Trajectories interpolation and mapping example 
 

4. Optimisation: 
The optimisation process aims to determine the values of empty arrays in the matrix using 
principles from variational theory. The objective is to find the shortest path for cumulative 
vehicle numbers, which is achieved by adjusting the values in the matrix to match real-world 
observations. The optimisation accounts for red light intervals, ensuring that the reconstructed 
trajectories accurately reflect stop-and-go conditions. Figure. 4.3 represents an example 
optimisation process without the use of reference trajectories. 
 

5. Trajectory Reconstruction: 
After optimisation, the cumulative values are used to generate contour lines representing 
individual vehicle trajectories. These trajectories provide a detailed map of vehicle movement, 
capturing the dynamics of traffic flow across the studied road segments. 

 

Figure 4.3: Matrix-based and the grid-based optimisation process as an illustration in the absence of 
reference trajectories. 

 
4.2 The implementation  
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The implementation of the trajectory reconstruction methodology is a multi-step process that integrates 
various datasets and computational techniques to accurately reconstruct vehicle trajectories on 
signalised urban arterials. The following outlines the key procedures and steps involved in the 
implementation: 

Data Collection and Preparation 

1. Connected Vehicle Trajectories (CompassIOT Data): 

a. Source: Real-world connected vehicle data is collected from CompassIOT, which 
provides telematics data for vehicles travelling within the study area. 

b. Scope: The data includes GPS coordinates, timestamps, and vehicle IDs, which are 
essential for mapping the actual trajectories of vehicles on the selected road segments. 

2. Signal Timing Data: 

a. Source: Traffic signal data is obtained from the traffic light control system from SCATS, 
detailing the timing and phases of signals at various intersections. 

b. Processing: The raw signal data is processed to extract binary vectors representing 
green (1) and red (0) intervals for each signalised intersection, refer to Figure 4.4. This 
data is crucial for understanding how traffic signals impact vehicle movements and for 
synchronising trajectory reconstruction with actual signal timings. Figure 4.5 provides 
the outcome we need as a vector of binary values, where 1s represents the green and 0s 
represents the red time. 

3. Traffic Volume Data: 

a. Source: Traffic volume data is gathered from loop detectors or other traffic count 
devices installed at key points along the study area. This data is typically recorded at 15-
minute intervals. 

b. Application: The traffic volume data is used to initialise the time-space matrix, setting 
the cumulative vehicle counts at specific locations and times as the starting point for 
the reconstruction process. 

 

Figure 4.4: A sample of signal timing raw data format. 
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Figure 4.5: Illustration of signal timing vector used for the matrix initialisation. 

Segment-Based Implementation 

Given the complexities of urban traffic, especially with vehicles entering and exiting different segments, 
the implementation is performed on a segment-by-segment basis, see Figure 4.6. This approach enhances 
accuracy and computational efficiency. 

 
Fig 4.6: Segment implementation. The count values are used for the upstream initialisation 

1. Segment Selection: 

o The road network is divided into smaller segments, each defined by a pair of SCATS 
(Sydney Coordinated Adaptive Traffic System) IDs. For instance, one segment might 
span from SCATS ID 3382 to SCATS ID 3383, covering a specific section of the road 
between two intersections. 

o Example: The study focuses on Hoddle Street in Melbourne, where segments such as 
(3382, 3383) are analysed individually (Figure 4.7). 

2. Upstream Initialisation: 

o For each segment, the traffic volume data from the downstream SCATS ID (e.g., 3383) is 
used to initialise the upstream values (e.g., 3382). This strategy helps to account for 
incoming and outgoing vehicles by setting the initial conditions based on the observed 
traffic at the downstream point. 

3. Matrix Initialisation: 

o A time-space matrix is created for each segment, where the rows represent spatial 
locations along the segment and the columns represent discrete time intervals. The 
matrix is populated with: 
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 Cumulative Vehicle Counts: Derived from traffic volume data, this sets the 
initial values in the matrix. 

 Signal Timing Vectors: Integrated to reflect the impact of traffic signals on 
vehicle movements within the segment. 

 Probe Trajectories: Real vehicle trajectories are mapped onto the matrix to 
guide the reconstruction process, see Figure 4.8. 

 
Figure 4.7: The connected vehicles trajectories for the section pair id (3382, 3383) for one hour of 

Wednesday, 28 September 2022, from 8:00:00 AM AEST to 8:59:59 AM AEST. 

 
Figure 4.8: The space-time plot of processed trajectories for section pair (3382, 3383) Street for one hour 

of Wednesday, 28 September 2022, from 8:00:00 AM AEST to 8:59:59 AM AEST. 
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Case Study Example: Hoddle Street, Melbourne 

The methodology was applied to a real-world case study on Hoddle Street in Melbourne, Australia. Key 
details include: 

1. Study Period: 

o The analysis was conducted for a one-hour period on Wednesday, 28 September 2022, 
from 8:00 AM to 8:59 AM AEST. 

2. Data Integration: 

o Connected Vehicles: 17 connected vehicle trajectories were extracted and used in the 
analysis. 

o Signal Timing: The signal data for intersections along Hoddle Street was processed and 
integrated into the matrix for each segment. 

o Traffic Volume: Count data for vehicles passing through each SCATS ID was used to 
initialise the matrix. 

3. Segment Analysis: 

o Each segment along Hoddle Street was analysed individually, with the matrix-based 
methodology applied to reconstruct the trajectories of vehicles within each segment. 

o Outcome: The reconstructed trajectories were visualised as space-time plots, showing 
the movement of vehicles through each segment over the study period. This visualisation 
highlighted key traffic dynamics, such as congestion patterns and the impact of traffic 
signals (Figures 4.7 and 4.8). 

Final Visualisation and Interpretation 

1. Space-Time Plots: 

o The final output of the reconstruction process is a set of space-time plots that depict the 
reconstructed trajectories of vehicles across the studied segments. These plots allow for 
a detailed analysis of traffic flow, highlighting areas of congestion, delays at traffic 
signals, and overall traffic dynamics within the urban arterial (Figures 4.9 and 4.10). 

2. Application Potential: 

o The reconstructed data can be used for various practical applications, such as improving 
traffic signal coordination, estimating travel times, and monitoring emissions, providing 
valuable insights for traffic management and urban planning. 

The methodology has significant potential for improving traffic management, particularly in optimising 
signal timings. Future work should focus on expanding the model to handle multi-lane roads and refining 
parameter calibration to enhance model accuracy across different traffic scenarios. 

 



   
 

 33 

 
Figure 4.9: The space-time plot of the reconstructed trajectories for the targeted segment with qmax = 

1000 and kj = 100. The black lines depict the actual trajectory data, while the coloured lines represent the 
reconstructed trajectories. 

 

Figure 4.10: The space-time plot of the reconstructed trajectories for the targeted segment.  

4.3 Summary of key findings 

1. The study successfully demonstrated the reconstruction of vehicle trajectories using a data 
fusion framework combining fixed sensor data and connected vehicle data. 

2. The methodology is based on kinematic wave theory, which provides a robust framework for 
understanding traffic dynamics in urban settings. 

3. The integration of signal timing data and traffic volume data with probe vehicle trajectories 
significantly improved the accuracy of the reconstructed trajectories. 

4. The methodology was validated using real-world data from Hoddle Street, Melbourne, 
confirming its applicability in complex urban environments. 

5. Potential applications of the reconstructed trajectories include improved travel time estimation, 
signal coordination, and emission monitoring, see Section 10. 

6. Further research should focus on extending the methodology to multi-lane roads and refining 
parameter calibration to enhance the model’s performance across various traffic conditions.  
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5 Intersection management: traffic efficiency and multi-modality 

This section comprises two key parts: Part A focuses on modelling traffic efficiency (cars-only), while Part 
B addresses occupancy-based fair and equitable priority at signalised intersections. Both methodologies 
are extensively elaborated in the interim report; however, some key findings are reviewed here. 

5.1 Improving traffic efficiency at signalised intersections 
The optimisation of intersection performance, particularly in terms of travel time reliability and delay, is 
crucial for effective traffic management. Utilising new data sources such as connected vehicles data, 
several key aspects such as queue length estimation (Y. Liu et al., 2021; Y. Zhao et al., 2019), delay 
minimisation (Liang et al., 2023), and public transport priority (He et al., 2012; Park et al., 2023) are 
considered to enhance intersection optimisation. In this study, we employed deep reinforcement learning 
(DRL) based signal control to assess the potential of connected vehicles data combined with traditional 
loop detector data for optimising traffic signals at intersections.  

Unlike traditional rule-based systems that primarily rely on vehicle volume and gap time between vehicles 
for signal optimisation, our study designed a traffic signal that leverages high-resolution connected 
vehicles data and incorporates embedded intelligence and automation in AI algorithms. DRL methods, 
capable of automatically extracting features such as queue length from raw data and learning tasks 
without prior knowledge through state, action, and reward mechanisms, enable the learning of optimal 
policy and production of improved results. Consequently, these methods are widely utilised in traffic 
signal control studies.  

In summary, we developed and implemented deep reinforcement-based traffic signal control by leveraging 
multi-source datasets (connected vehicles, loop detector, and public transport demand and operational 
data) to achieve the following objectives: 

• To test and examine possible improvements in signal optimisation through high-resolution 
connected vehicles location data. 

• To evaluate the effectiveness of advanced AI models compared to conventional control systems 
using both traditional sensor data and connected vehicles data integration. 

• To assess the impact of different ranges of traffic data on existing optimisation models. 
• To ascertain how data-rich deep learning models can benefit from emerging data sources like 

connected vehicles data in modelling and controlling occupancy-based priority control at 
intersections and the extent to which it enhances traffic efficiency and throughput compared to 
traditional actuated control systems (in Section 5.2). 

Three detection technologies are tested in this section as follows: 

1. Loop Detectors:  Figure 5.1 presents an incoming link of an intersection. Two loop detectors are 
placed within this link, one at the entrance and the other at stop bar. By having the number of 
entering and exiting volumes collected from these detectors, the total volume of the link is 
calculated.  

2. Video Cameras: The video cameras can detect the vehicles and provide the volume or density 
data. With advanced computer vision techniques and the large number of video frames, the queue 
length data can also be extracted. 

3. Connected Vehicles Location Data: The connected vehicle data when fused with loop detectors 
data can provide all vehicles trajectory information, which include important information on the 
number of vehicles in the queue and in the residual queue (vehicles stuck behind the red light 
more than one cycle). In addition to this information, the data can cover the centre of the 
intersection (i.e., cross-box area). This is also a valuable information as the turning vehicles 
experience additional delays when seeking a gap to complete their movements. This data cannot 
be collected from loop detectors and traditional cameras that only monitor the area behind the 
stop bars. 
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In this study, trajectory reconstruction methods was employed to provide complete trajectories for training 
DRL models. The information from above-mentioned sensing technologies is used for the RL’s state and, 
the calculation of reward value during action execution.  

Figure 5.2 illustrates the case study for the intersection of interest with 1-hour of simulation duration. The 
demands are varied across the 1-hour period to ensure the complexity and dynamics of the demands in 
our experiments. We used Double Deep Q-Network (DDQN) algorithm as a popular deep RL method in the 
literature. The proposed models are presented in Table 5.1.  

 

 
Figure 5.1: Calculation of total volume from inflow and outflow detectors 

The first model is Deep Reinforcement Learning Adaptive Traffic Signal Control In-Out Flow (DRL-ATSC 
InOutFlow) which uses the data collected from inflow/outflow loop detectors. The second model “DRL-
ATSC Density R0” is fed with volume collected data from video cameras. It is noted that the volume data 
in this model is directly collected from video cameras while the volume data in “DRL-ATSC InOutFlow” 
model is collected from two loop detectors at link entrance and stop bar.  

The last two models “DRL-ATSC Density R2” and “DRL-ATSC Queue Density R2” take advantage of CV data 
to use additional information. The difference is that the former model counts the residual volumes while 
the latter counts the residual delay/queue data. It is noted that the queue length includes the vehicles with 
speeds less than 5 km/hr and Density represents the number of vehicles in the area of interest. For all DRL 
traffic signal models, the actions are 5 different traffic signal times ranging from 10 seconds to 30 seconds 
with 5 seconds intervals. To provide safe movements, a 5 second protected signal is provided for right 
turning vehicles after terminating a signal phase. 
 
The DRL models are also evaluated with non-learning baselines as follows: 

• Actuated: based on gap times and occupancies  
• Advanced actuated: actuated with additional parameters (headway and waste)  
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Figure 5.2: Demand variation for 1 hour simulation. Figure on the right and bottom shows volume for 

different directions, and demand variation across 1-hour period, respectively. 

Table 5.1: Descriptions of the proposed model versus baselines 

Model Reward 
Cross-Box Area + 
Residual Queue 

data 
Sensing technology 

DRL-ATSC InOutFlow 

Minimise the summation of 
volumes present in the control 

volume (within 100 meters from 
stop bar) calculated from inflow 

and outflow 

N/A Loop detectors 

DRL-ATSC Density R0 
Minimise summation of vehicles 

present in the control volume 
(i.e., the whole length of the links) 

No Video Camera 

DRL-ATSC Density R2 Yes Connected Vehicles 

DRL-ATSC Queue Density 
R2 

Minimise summation of queue 
lengths Yes Connected Vehicles 

 
The results demonstrate that the "DRL-ATSC Queue Density R2" model, utilising connected vehicles data, 
achieves optimal policy learning and outperforms other DRL models in terms of average travel time and 
queue length reduction, as demonstrated in Table 5.2 and Figure 5.3. On the other hand, the "DRL-ATSC 
Density R2" model, which lacks queue length data and relies solely on volume data, exhibits reduced 
training performance; however, it still learns the policy and performs as effectively as the "DRL-ATSC 
Queue Density R2" model in decreasing delays. Additionally, reducing the data features input to the DRL 
model results in underperformance compared to the best model, which utilises more features from high-
resolution connected vehicles data.  
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Table 5.2: Performance metrics results of first 50 training episodes with 95% confidence interval (trained 
models) 

 

 

Figure 5.3: Training plot displaying the performance of all models across 1700 episodes, with results 
presented as the simple moving average over 200 episodes. 

Furthermore, it has been found that, when the data is limited to loop detectors only, the DRL model can 
still learn the policy, but both travel times and queue lengths marginally deteriorate compared to DRL 
models that use high-resolution data from connected vehicles. Importantly, the inclusion of fine resolution 
data from connected vehicles, including lane-level volume and residual queue information, facilitates 
faster learning and more accurate and effective signal control. While all the deep reinforcement learning 
models significantly outperformed rule-based actuated signal controls, DRL models without in-depth fine 
resolution connected vehicles data inputs slightly improved average queue length and exhibited similar 
performance in travel time compared to advanced actuated signal control. This highlights the potential 
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benefits of fine resolution connected vehicles data for improving data hungry AI models. Our study 
demonstrates how, with the increasing penetration of connected vehicles, AI and deep learning models 
can be greatly enhanced in the future. 

5.2 Occupancy-based priority at signalised intersections 

To evaluate the potential of connected vehicles data and advanced machine and deep learning in providing 
equitable and efficient green time for all modes, we implemented two occupancy-based signal priority 
deep reinforcement models and tested them in two scenarios, comparing their performance to Actuated 
Transit Priority Control (ATPC). The first scenario used synthetic occupancy and public transport 
operational data, while the second scenario incorporated real data from tram operations in Melbourne 
alongside connected vehicles data and loop detector data. For each scenario, two different deep 
reinforcement learning models were assessed, one including residual queue information and the other 
without this additional data from connected vehicles.  

Our case study includes a single isolated intersection within AIMES testbed as shown in Figure 5.4. There 
are two tram stops, one for the Northbound and the other for Southbound direction. It is noted that the 
tram stops are located at the downstream of the intersection for both directions. Figure 5.5 illustrates the 
phasing structure of the case study intersection. Each tram line has its own tram signal that allocate an 
extended green time for the corresponding direction. 

 
Figure 5.4: Case study on Elgin/Nicholson Intersection 

The key components of the proposed DRL model are as follows: 

• State: The individual information of vehicles and trams such as speed and location data are fed to 
deep RL model. For each tram direction, the information of tram occupancy is also included.  

• Action: The deep RL method has 6 actions, extending the green time from 0 to 30 seconds for 
activated phase direction. 

• Reward: The vehicle waiting times are calculated by counting the number of vehicles with speed 
less than 0.02 km/hr in every step of the action direction. For trams, the speed threshold is 5 km/hr 
to penalise the stopping of trams behind the red light. It is noted that the residual waiting time is 
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also included for both vehicles and trams. Residual queue occurs when a vehicle/tram get stuck 
behind the red light for the second time. Hence, a reward values (i.e., waiting time) of the 
vehicle/tram are the accumulated waiting times behind the red light.    

Our proposed model is named Intelligent Multi-modal Signal Priority (IMSP). The IMSP-R2 is the model with 
extended reward functions (i.e., cross-box data and residual queue) while IMSP-R0 lacks the additional 
components used in the IMSP-R2. The IMSP models are compared with actuated TSP signals named 
Adaptive Transit Signal Priority (ATSP) that gives certain level of priorities between 0 to 12 seconds with 3 
seconds intervals (e.g., Ttsp=0,3,6,9,12sec) based on the operator need. 

 
Figure 5.5: Phasing structure of the case study intersection 

The proposed model is tested under two scenarios. In the first scenario, a synthetic data is used for the 
occupancy of trams in three levels 1) low=20, 2) medium=60 and 3) high=100 passengers on-board, 
assuming a uniform 3-minutes headway for all trams. The second scenario is tested based on the real 
occupancy and headway data (Table 5.3) to expose the model to more complex real-world scenario. For 
both scenarios, the vehicles demand is a rush hour scenario. 

The evaluation of results is based on following performance metrics: 
• Average travel time of vehicles 
• Average travel time of trams 
• Average user speeds: average speed of vehicle and tram occupants (all users)  

Table 5.3: Tram occupancy and headway. A real data collected from the intersection. 
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The findings demonstrate that DRL with queue information data from connected vehicles substantially 
enhances the average speed for all occupancy levels, as illustrated in Figure 5.6. While the DRL model 
without additional CV data features can match the performance of the former at lower occupancy levels, 
it fails to achieve the same level of superiority at higher occupancy levels, particularly with 100 passengers 
onboard. This emphasises the potential improvement in occupancy-based priorities using advanced deep 
learning models and leveraging additional high-resolution data from connected vehicles, especially for 
high onboard loads typical during rush hours. 

In the second scenario, the proposed deep reinforcement learning, leveraging additional connected 
vehicles data, outperforms all benchmarks in every performance metric by a relatively larger margin (13%) 
compared to ATSP (Figure 5.7). Notably, DRL models using CV data without additional features like 
residual queue still marginally exceed the benchmarks. This clearly indicates the promising potential of 
employing connected vehicles data to optimise traffic signals and allocate fairer and more efficient 
priorities, rather than consistently prioritising public transport while transferring all delays to car users. As 
expected, DRL models using CV data slightly increase the travel time of public transport users, but the 
overall average travel time and speed for all users are significantly improved (Figure 5.8). This suggests that 
the DRL can sense the number of onboard occupancy and prioritise public transport only when necessary. 

Overall, this study has revealed that using high spatial and temporal resolution data from connected 
vehicles can be utilised by data-hungry machine and deep learning models to benefit the 
comprehensiveness of CV data and the intelligence of AI models, advancing signal control to be more 
sophisticated, intelligent, and fair, and contributing to efficient, safe, and sustainable intersection 
management practices. 
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Figure 5.6: Training plots for scenario 1 
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Figure 5.7: Training plots for scenario 2 

 

 
Figure 5.8: Result of performance metrics for scenario 2 
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5.3 Summary of key findings 

Traffic efficiency at intersection 
1. Utilising connected vehicle data and deep reinforcement learning (DRL) based signal control 

can improve traffic signal control and reduce travel times and queue lengths by up to 10-15%. 
2. The DRL-ATSC Queue Density R2: model, which uses connected vehicle data and residual 

queue length information, outperforms other DRL models in terms of average travel time and 
queue length reduction. 

3. The DRL-ATSC Density R2: Without queue length data and relies solely on volume data, 
exhibits reduced training performance but still learns the policy and performs effectively in 
decreasing delays.  

4. DRL models without high-resolution connected vehicle data inputs slightly improve average 
queue length and exhibit similar performance in travel time compared to advanced actuated 
signal control. 

5. All DRL models outperformed rule-based actuated signal controls. However, when data is 
limited to loop detectors only, the DRL model can still learn the policy, but both travel times 
and queue lengths marginally deteriorate compared to DRL models that use high-resolution 
data from connected vehicles. 

6. Overall, inclusion of fine-resolution data from connected vehicles facilitates faster policy 
learning and more optimal signal control. 

Occupancy-based priority control at intersection  
1. Occupancy-based priority control at intersections can be improved using connected vehicle 

data and DRL, enabling fair and equitable priority allocation.  
2. Implemented two occupancy-based signal priority using deep reinforcement learning: 

a. Intelligent Multi-modal Signal Priority (IMSP), with IMSP-R2 including extended reward 
functions (cross-box data, residual queue) and  

b. IMSP-R0 without these components and compared them to Actuated Transit Priority 
Control (ATPC) in two scenarios.  

3. DRL with queue information from connected vehicles (IMSP-R2) significantly enhances 
average speed for all occupancy levels (5-10%). 

4. DRL models without additional CV data features (IMSP-R0) perform well at lower occupancy 
levels but not at higher levels (i.e., 100 passengers). 

5. In the second scenario, DRL with connected vehicles data outperforms all benchmarks by a 
larger margin (13%) compared to ATSP. 

6. DRL models using CV data, even without additional features like residual queue, marginally 
exceed benchmarks. 

7. DRL models slightly increase travel time for public transport users but significantly improve 
overall average travel time and speed for all users. 

8. Overall, high-resolution data from connected vehicles enhances DRL models, leading to more 
sophisticated, intelligent, and fair signal control, contributing to efficient, safe, and 
sustainable intersection management practices. 
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6 Micromobility management: Bicycle safety and efficiency  

6.1 Bicycle safety 
Bicycling has experienced significant growth in recent years as an environmentally friendly, affordable, and 
healthy mode of transport. Globally, bicycle usage has surged, with cities investing in cycling infrastructure 
and promoting bike-sharing schemes (Pucher & Buehler, 2017). However, this growth in bicycling has also 
highlighted concerns over cyclist safety, particularly on shared roads with motorised vehicles. According 
to the World Health Organization WHO (2018), among 1.35 million road traffic deaths, more than half are 
vulnerable road users including bicyclists, pedestrians, and motorcyclists. These alarming figures 
underscore the urgent need for effective measures to enhance cyclist safety and prevent such tragedies. 

A fundamental step towards bicycle safety is understanding unsafe parts of the infrastructure and risky 
behaviours displayed on the roads. GPS data collected by users' smartphones or diagnostics devices 
installed on bicycles can provide valuable insights. A combined approach, such as the technology 
developed by See.sense bicycle lights, which relies on smartphone GPS and onboard sensors, has 
significant potential due to its low cost and reasonable coverage. 

By analysing harsh braking events, abnormal manoeuvres, or near-miss situations experienced by cyclists, 
researchers can pinpoint high-risk locations, behaviours, or road conditions that contribute to bicycle 
accidents. This proactive approach allows for the identification of dangerous locations or issues with the 
current built environment and geometric design, contrasting with the traditional reactive approach. By 
identifying surrogate safety measures, we can assess and improve site safety without waiting for accidents 
to occur and cause harm (Strauss et al., 2017). 

This study utilises large-scale bicycle telematic data provided by SeeSense, collected from users in 
Melbourne metropolitan area from 2021 to 2024. The dataset, along with actual crash data from traffic 
police reports, is used to develop a model that estimates the correlation between harsh braking and 
abnormal events derived from GPS and gyroscope data with actual crash incidents. 

6.1.1 Method and data 
A comprehensive framework is developed to estimate the correlation between abnormal events and 
harsh-braking events recorded from bicycle telematic data with actual bicycle crashes recorded from 
historical crash data (Figure 6.1).     

• Phase 1: Exploratory Analysis 
o Identify patterns and distributions of bicycle crashes, abnormal events, and road 

surface conditions. 
o Focus on understanding the frequency and locations of crashes and abnormal events. 
o Assess road surface conditions using proxy measures from gyroscope sensor readings. 

• Phase 2: Road Network Integration 
o Integrate road network data with bicycle telematic data and historical crash data. 
o Examine how road geometry influences crash patterns and abnormal events. 
o Classify road geometries into intersections and non-intersections using a rule-based 

algorithm. 
• Phase 3: Correlation Analysis 

o Analyse the correlation between identified abnormal events and historical crash data. 
o Distinguish between intersections and non-intersections to provide insights into specific 

types of road geometries prone to crashes and abnormal events. 

This methodological framework offers a robust approach to analysing bicycle crash patterns and road 
surface conditions. By leveraging multiple data sources and employing a detailed classification of road 
geometries, the framework provides a comprehensive understanding of the factors contributing to bicycle 
crashes and abnormal events. This evidence-based approach is instrumental in developing data-driven 
strategies for improving road safety for cyclists. 
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Figure 6.1: Methodological framework pipeline for analysing the correlation between abnormal events 
from GPS data and historical crashes 

Bicycle GPS and Gyroscope data 
This study utilises GPS and gyroscope data collected by SeeSense (SeeSense, 2024), a company 
specialising in cycling technology aimed at enhancing cyclist safety and the overall cycling experience. 
Their innovative approach integrates advanced sensor technology into their flagship products, such as the 
SeeSense ICON and ACE lights. These smart bicycle lights detect various riding conditions, including road 
surface quality, harsh braking, and swerving, while also serving as data collection devices. 

The data is collected from thousands of public bikers in the Melbourne metropolitan area of Australia who 
agreed to provide their movement data. The dataset spans three years, from January 1, 2021, to May 1, 
2024, and comprises over 20 billion sensor readings and 2 million rows of data per aggregated unit. The 
data is processed and aggregated per 3x3 meter grids to preserve user privacy while retaining essential 
information at acceptable resolutions. 

The dataset consists of two types: 

• Normal Data: Focuses on average cycling dynamics, offering comprehensive details about 
patterns, road conditions, and behaviour aggregated per spatial unit. It includes features such as 
latitude and longitude coordinates, average number of cyclists per location, road surface 
quality, and normalised values for braking and swerving, see Figure 6.2. 

• Extreme Data: Captures behaviours considered abnormal for each cyclist, indicating deviations 
from the normal range, which may correlate with crashes or incidents. Each row represents the 
number of abnormal events per aggregated 3x3 meter spatial unit, see Figure 6.3. 

The extreme dataset captures behaviours considered abnormal for each cyclist. According to SeeSense, 
patented technology used in bicycle lights profile each cyclist and the bike they ride, determining the 
normal range of gyroscopic information for each individual. Therefore, the score indicates deviations from 
this normal range, considered as extreme cases, which may correlate with some crashes or incidents. In 
total, there are 15 thousand extreme locations with different number of abnormal events per location (3x3 
metre grid).  
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Figure 6.2: SeeSense normal data collected from cyclists' smartphone GPS and smart bicycle lights for 
gyroscopic information, illustrated in a 3x3 metre aggregated format 

 

Figure 6.3: SeeSense extreme events data collected from cyclists' smartphone GPS and smart bicycle 
lights for gyroscopic information, illustrated in a 3x3 metre aggregated format (Events outside normal ride 

profile identified by smart lights for each cyclist). 

Historical cyclist crash data 
Historical road crash data collected and maintained by traffic police and hospital reports are used in this 
study. The dataset, released by the Department of Transport and Planning in Victoria, Australia, covers 
records from 2000 to 2024 (DTP, 2024). It contains detailed information on road crashes, providing 
valuable insights for researchers, policymakers, and transportation authorities. 

The Victorian Road Crash Data is organised into several resources, each containing specific information 
related to crash events, including: 

1. Accident: Details about the crash itself, such as date, time, location, severity, and number of 
vehicles involved. 

2. Accident Event: Information about the events leading up to the crash, including factors such as 
collision type, traffic control measures, and contributing circumstances. 

3. Vehicle: Details about the vehicles involved, including type, year of manufacture, and potential 
defects or issues. 

4. Person: Information about individuals involved, including drivers, passengers, and pedestrians, 
including age, gender, and injuries sustained. 

5. Accident Location: Geographic information about the crash location, including road name, 
suburb, and GPS coordinates. 

6. Atmospheric Condition and Road Surface Condition: Information about environmental 
conditions at the time of the crash, such as weather, lighting, and road surface characteristics. 

The dataset is regularly updated and maintained open source, ensuring that researchers and authorities 
have access to the most current and accurate information available. 
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6.1.2 Exploratory analysis 
This section reports an exploratory analysis using GPS and gyroscope data from bicycles alongside actual 
crash data from traffic police reports. By integrating high-resolution, comprehensive data from both 
sources, we aim to gain insights into trends, patterns, distributions, and the severity of crashes, as well as 
the spatial correlation of abnormal events.  

Historical bicycle crash pattern  
The bar chart in Figure 6.4 illustrates that bicycle-involved crashes are more frequent at intersections 
(59%) compared to all crashes (41%). This finding aligns with existing literature, which reports that most 
cyclist crashes occur at intersections (Strauss et al., 2017)(Hirose et al., 2021). Interestingly, crashes 
involving two bicycles are more frequent on mid-block segments (61%) than at intersections (39%). This 
trend might be attributed to bike-bike crashes occurring on mid-block corridors or bikeways when cyclists 
traverse or cross paths, leading to accidents (Figure 6.5). 

• Distribution of Crashes by Severity: The results show that the number of fatalities and serious 
injuries in bicycle-involved crashes is slightly lower than in all crashes, with percentages of 0.7% 
and 32.2% for bicycle-involved crashes compared to 1.6% and 36.4% for all crashes, respectively. 

• Spatial Distribution of Crashes: Figure 6.6 shows an interesting pattern, with the majority of fatal 
crashes distributed on the outskirts of the city centre and the Central Business District (CBD). This 
distribution could be associated with higher speed limits in these outer areas compared to inner 
city neighbourhoods. Moreover, the majority of injuries fall between non-injury accidents and 
serious-injury accidents, with serious injury accidents slightly more prevalent in the outer parts of 
the city compared to the inner areas. 

• Crashes Involving Two or More Bicycles: For crashes involving two or more bicycles, injuries 
typically fall between non-injuries and serious injuries (Figure 6.7). This is likely because such 
crashes often occur between two bicyclists. The spatial distribution of these crashes confirms this 
hypothesis, indicating that the majority of these incidents are concentrated around sea trails and 
locations with bike trails. A few fatal crashes are also observed in regional areas, which might be 
associated with interactions between cars and multiple bicyclists. This emphasises the need for 
careful design, management, and operation of bike-friendly locations with dedicated bike lanes 
and trails to reduce the number of crashes and incidents. 

 

 

Figure 6.4: Distribution of bicyclist involved crashes versus all crashes at different road geometries 
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Figure 6.6: Distribution of bicycle-involved crashes based on type of injuries and number of fatalities 

 

Figure 6.5: Distribution of bicyclists involved crashes, bicycle-bicycle crashes, and all crashes at different road 
geometries 
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Figure 6.7: Distribution of crashes involving two or more bicycles based on the type of injuries and 

number of fatalities. 

Historical bicycle abnormal events (harsh braking)  
This section presents an extensive data analysis based on GPS and gyroscope bicycle data. We explored 
the distribution of features in both normal and abnormal events. Figure 6.8 shows that for every feature in 
the abnormal data, the mean values are roughly tenfold higher than those in normal conditions, indicating 
potential crashes or incidents. For example, the distribution of maximum brake value graph shows the 
distribution of abnormal events per unit grid location. In other words, over 1000 locations recorded more 
than 10 abnormal events over the past three years. This figure is useful for identifying hotspots where 
abnormal events occur frequently, helping to highlight areas with potentially higher risks for cyclists.  

The spike on the right of the graph is interesting, which may relate to the specific cause of incidents. While 
it is difficult to definitively attribute to a specific cause without further investigation, the following factors 
may potentially explain it to some extent. Which included, cyclists traveling downhill and those traveling 
at higher speeds on roads with higher speed limits. In the case of sudden braking, these two groups indeed 
generate larger braking values compared to those riding at lower speeds.  

Spatial Distribution of Abnormal Events: 
• Figure 6.9 illustrates the spatial distribution of abnormal events based on different levels of 

harsh braking at three distinct resolutions. The results indicate that the central part of the 
metropolitan area exhibits a higher density of extreme and high braking events, suggesting areas 
with frequent sudden stops or a high likelihood of potential crashes. Clear patterns can be 
observed, demonstrating a distinct distribution between low braking events and moderate to 
high braking events. 

• There is a high concentration of harsh braking events around the Yarra River at Southbank, where 
cyclists share paths with pedestrians. This higher concentration could result from the pedalling 
and braking movements and the higher volume of bicyclists in the area. Additionally, significant 
number of events are observed at intersections, where the majority of bicycle crashes occur 
(Hirose et al., 2021). 

Road Surface Quality: 
• Figure 6.10 is a spatial heatmap depicting the quality of road surfaces, derived as a proxy 

measure using gyroscopic sensor readings from bicycle data. The abnormal values are classified 
into four different ranges:  

o Extreme (95th percentile - red): 89 to 163 
o High (75th percentile - orange): 16 to 88 
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o Moderate (50th percentile - yellow): 4 to 15 
o Low (<50th percentile - blue): 0 to 3 

• A high concentration of red and orange areas in the central part of the map indicates poor and 
hazardous road surfaces. Overall, y-surface readings from gyroscope sensors can potentially be 
used as a proxy measure to assess the quality of road pavements and identify hazardous regions 
requiring maintenance or improvement to enhance road safety and surface quality. 

• The higher readings, as indicated by red arrows in the zoomed-in sections, suggest that certain 
roads and segments may have deteriorated or aged pavements with lower levels of service and 
potholes. 

  

Figure 6.8: Gyroscope scores for normal conditions (left) and extreme cases (right) 

 
Figure 6.9: Spatial distribution of abnormal events (harsh braking) based on different braking levels. The 

left panel represents the Melbourne metropolitan area, the middle panel represents Melbourne city, and 
the right panel represents Melbourne CBD. 

Relationship between Gyroscopic Variables: 
• Figure 6.11 shows a correlation matrix between gyroscopic variables, including swerving, 

braking, and y-surface score. Correlation matrix is often used to show how each variable is 
correlated with the others. For example, it suggests that a low-quality road surface is 
associated with an increased likelihood of swerving and harsh braking, which can indicate a 
higher risk of accidents for cyclists. For example, the correlation between max swerve and 
braking is 0.51 which is significant and meaningful.  

• Overall, y-surface readings from gyroscope sensors can potentially be used as a proxy 
measure to assess the quality of road pavements and identify hazardous regions requiring 
maintenance or improvement to enhance road safety and surface quality. 

• However, identifying these abnormal events, potential biases and errors in the design and 
implementation of the algorithm, profiling and validating these values for different cyclists 
and types of bicycles, as well as ensuring the accuracy of data collection and treatment, are 
crucial factors that influence the reliability and potential applications of these datasets. 
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Figure 6.10: Spatial heatmap of the road surface quality (the darker the poorer and hazardous) 

 

Figure 6.11: Correlation matrix between gyroscopic variables 

6.1.3 Correlation between near-misses and actual crashes: A surrogate safety measures using 
bicycle GPS and Gyroscope data at scale 

This method relies on identifying and analysing harsh braking events, abnormal manoeuvres, and near-
miss situations recorded by GPS and gyroscope sensors during bicycle journeys. Since the values of these 
surrogate safety indicators deviate significantly from normal conditions, it is hypothesised that there is a 
potential correlation with actual crashes. Building on this idea, the research aims to identify high-risk 
locations, behaviours, and road conditions that may contribute to bicycle accidents. This approach allows 
for the proactive identification of dangerous locations or issues with the current geometric design, 
contrasting with traditional reactive methods. 

The bike GPS data is collected from a sample of bicyclists over a span of three years (2021 to 2024). To 
better accuracy, both the crash data and abnormal events data are aggregated into 50x50 meter grids. 
Additionally, when integrating crash data with SeeSense data to model surrogate safety measures, we 
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limited the bicycle crash data to the same period as the SeeSense datasets, from January 2021 to May 
2024. This alignment ensures a more accurate representation of the correlation estimation. Two different 
correlation coefficients are utilised: Pearson correlation and Spearman correlation, as shown in Equations 
7.1 and 7.2, respectively. 

𝑟𝑟 = ∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1

                                                   Equation 7.1  

𝜌𝜌 = 1 − 6∑𝑑𝑑𝑖𝑖
2

𝑛𝑛(𝑛𝑛2−1)
                                                            Equation 7.2 

Where, 𝑥𝑥𝑖𝑖  is the number of abnormal events from GPS data at location 𝑖𝑖 , 𝑦𝑦𝑖𝑖  is the number of actual 
accidents from historical crash data at location, �̅�𝑥 and 𝑦𝑦�, are the mean abnormal events and mean actual 
accidents across all locations, respectively. 𝑛𝑛 is the total number of locations in the dataset and 𝑑𝑑𝑖𝑖  is the 
difference between the count of abnormal events and actual accidents.  

The spatial heatmaps presented in Figures 6.12 and 6.13 offer a detailed comparison and analysis of road 
safety dynamics within the Melbourne metropolitan area. Both heatmaps reveal a similar pattern of high 
incident density in the Central Business District (CBD), indicating areas prone to frequent and severe 
braking as well as higher accident rates involving bicyclists.  

This correlation suggests that the dense urban traffic and complex road networks in the CBD are critical 
factors contributing to these events. Suburban areas exhibit a more dispersed pattern of harsh-braking 
events compared to the more localised concentration of bicyclist accidents along major roads and local 
towns, highlighting different spatial dynamics at play. Peripheral regions show lower incident intensities, 
reflecting safer conditions likely due to reduced traffic volumes and simpler road layouts. It is worth noting 
that the GPS data comes from a sample of bicyclists using SeeSense smart bicycle lights who agreed to 
share their data. Therefore, outer regions and suburbs might be underrepresented in the sample, 
necessitating further investigation. 

The analysis shows a significantly higher correlation between abnormal events and actual crashes at 
intersections (Pearson correlation rank: 0.69, Spearman rho: 0.36) compared to non-intersection areas 
(Pearson correlation rank: 0.50, Spearman rho: 0.26). For the non-classified model, which includes both 
intersections and non-intersections together, the Pearson correlation remains the same as at 
intersections, 0.69, while the Spearman rho slightly reduces from 0.36 at intersections to 0.32 for the entire 
network, as shown in Figure 6.14. 
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Figure 6.12: Spatial heatmap of the abnormal events based on harsh-braking scores (the darker the more 

severe instances and/or higher number of abnormal events) 

 

Figure 6.13: Spatial heatmap of the number of bicyclists based on actual crash data (the darker the 
higher number of bicyclists involved and/or higher accidents) 
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Figure 6.14: Scatter plots and correlation ranks between abnormal events and actual accident counts for 
the entire network (top), at intersections (bottom left), and for non-intersections (bottom right). 

These results demonstrate that utilising surrogate safety measures from bicycle GPS and gyroscope data 
at scale can be instrumental in developing proactive safety measures, identifying safety hotspots, and 
using proxy measures to assess and improve the road surface quality, particularly for vulnerable road 
users. 

Most importantly, minor injuries resulting from accidents between pedestrians and cyclists are 
significantly underestimated in police crash data. Therefore, relying solely on such data falls short in 
identifying the distribution, patterns, and locations of these hotspots. The high correlation and the 
significant role of abnormal events in explaining actual crashes, as found in this research, suggest that 
surrogate safety measures based on GPS and gyroscope data can be valuable for identifying, preventing, 
and managing safety risks. This approach can substantially improve the quality of roads, biking trails, 
shared corridors, and intersections, making them safer and more accessible for everyone. 

6.2 Bicycle flow efficiency  

Cycling offers numerous public benefits, including reducing traffic congestion and air pollution, as well as 
promoting healthier lifestyles. Cities globally are actively encouraging cycling as a sustainable and 
practical travel option by investing in cycling infrastructure and facilities, and by motivating people to cycle 
more regularly. Cycling is often a fast and efficient alternative for short-distance trips, particularly in 
densely populated urban areas (Clarry, 2019 #699). The potential for faster travel makes cycling an 
attractive option for a broader population. Therefore, it is essential to further study cyclists' flow and 
speeds across various types of road networks to better understand their needs and improve urban 
planning. 
 
This section reports a developed framework using large-scale GPS data aiming at our following 
objectives:  
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1. Identify the most frequent routes and popular cycleways.  
2. Explore where users ride faster and what are the patterns and the frequency of delay.  
3. Understand how different road functional classes correlate with speed distributions.  
4. Classify different cyclist typology using unsupervised machine learning. 

 
The following framework is proposed to effectively address the designed objectives. This framework 
illustrates the process for analysing cycling data to provide insights on road network performance, using 
GPS data from bicycles mapped with road network, see Figure 6.15. The initial step involves mapping this 
data onto the existing road network infrastructure, which can be classified into different types, such as all 
network types or specific car network types. This means that we exclusively analysed the distinct 
behaviour between dedicated bicycle network and overall network shared with other modes including 
cars. This mapping enables the extraction of segment-based network insights, which include metrics such 
as speed, bicycle flow and volume, delay distribution, and frequency of delay. These metrics help in 
understanding the overall performance, hotspots, and usage of different segments of the road network by 
cyclists. 
 
The processed data is then used to classify roads based on key performance indicators (KPIs) derived from 
the earlier metrics. This classification helps in identifying which segments of the road network perform 
better or worse for cyclists, which can guide improvements in infrastructure. Following this, the classified 
data is fed into an unsupervised machine learning clustering process, which groups similar patterns 
together to reveal different cyclist topologies and network states. These insights allow for a deeper 
understanding of how different segments of the road network are used and can inform urban planning and 
policy decisions to enhance cycling infrastructure and overall urban mobility. 
 

 
Figure 6.15: The designed framework for bike flow efficiency analysis 

 
A. Identifying the most frequent routes using average number of cyclists 

The Figures 6.16 provides insights into cyclist density across Melbourne City’s Road Network. Both maps 
illustrate the average number of cyclists using different road segments, with a colour gradient from red 
(low density) to green (high density). In this figure the bicycle telematic data is mapped to two different road 
network type, the top figure shows average bicycle volume on all type roads that can be used by all other 
modes and the bottom figure shows road network that is exclusively shared between motorised vehicles 
and bicycles, other modes such as pedestrians are possibly not permitted to enter. This can help to 
distinguish whether the popularity of bicycles routes depend on dedicated lanes or the share a similar 
pattern between dedicated lanes and shared with motorised vehicles. 
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Figure 6.16: Popular route based on average number of bicyclists, all type of road network (top panel) and 
car exclusive road network (bottom panel).  

The key findings and patterns can be summarised as follow: 
 

1. High Cyclist Density Areas: In both figures, the highest cyclist density (green lines) is observed 
around central Melbourne, particularly in the CBD, Docklands, and surrounding inner-city 
suburbs. This indicates these areas are primary routes for cyclists, likely due to their proximity to 
business and recreational areas. 
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2. Key Cycling Routes: The figures highlight specific roads and paths with consistently high cyclist 
numbers. These include key arterials such as Swanston Street and routes along the Yarra River. 
These routes serve as major corridors for commuting and leisure cycling. 

3. Consistency regardless of road type: Interestingly, it can be seen that regardless of the type of 
road network whether it is shared with motorised vehicles and cars or included exclusive lanes 
for bikes, the popular routes remain the same. However, the average flow increases with 
existence of the dedicated lanes and pathways for bikes. This shows that policy makers and city 
planners can boost bicycle usage for both daily commuting and leisure by improving roads and 
adding protected bikeways. 
 

B. Where cyclists ride fast 

The Figure 6.17 illustrates the average cycling speeds across Melbourne City’s Road Network. The first plot 
maps average speeds on all road types that can be used by various modes of transport, including bicycles. 
The second plot focuses specifically on roads that are shared by bicycles and motorised vehicles. In both 
plots, colour-coding is used to represent speed: red indicates lower average speeds, while green shows 
higher speeds. It is evident that cyclists experience reduced speeds, particularly in the CBD and along 
major roads, where interactions with other vehicles are more frequent. 

Key findings can be summarised below: 

1. Cyclists experience longer delays at major intersections, on major roads, and in the city centre, 
indicated by the lower speeds (red areas) in these locations. This is more evident in Figure 6.18, 
which shows delay frequency. Generally, 15 to 25 percent of cyclists are delayed at major 
intersections, compared to only 3 to 8 percent on minor roads and at smaller intersections. 

2. On average, dedicated bike paths improve overall cyclist speed compared to routes where 
cyclists share the road with cars, highlighting the benefits of segregated cycling infrastructure. 

3. The car network plot (second figure) shows more areas of reduced speed, particularly in the 
city centre and on major roads, suggesting that in multi-modal situations, such as those involving 
both cyclists and motor vehicles, average cycling speed decreases. This reduction can be linked 
to longer waiting times at intersections, car-oriented traffic signals, and a lower prevalence of 
dedicated bike lanes. However, further intersection-specific analysis is needed to confirm these 
observations. 

4. The significant speed reduction on major roads and in the CBD could imply that cyclists might 
engage in illegal crossing behaviours at minor intersections and on local roads, where speed 
reductions are less evident, see Figure 6.17 and 6.18. This finding is crucial for understanding the 
safety of vulnerable road users. Additional research, including correlation with traffic incidents 
and crash data, is necessary to validate these observations and assess road safety implications. 

 
C. Road functional classes and speed distribution 

The Figure 6.19 displays the distribution of various performance indicators for cyclists across different 
road functional classes, including walkways and paths, primary roads, and motorways/links. Each road 
class contains the speed distribution (average speed in km/h), the number of average cyclists, the 
distribution of delays (time stopped in seconds), and the percentage of cyclists who were experienced 
delays. These charts provide insights into how cycling conditions vary depending on the type of road and 
highlight key aspects of cycling performance, such as speed and delay. 
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Figure 6.17: Average speed distribution across Melbourne City. All type of roads (top panel), car driving 
roads (bottom panel).  
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Figure 6.18: The probability of delays in Melbourne City. It shows delayed bicyclists as the percentage of 
all bicyclists.  

Across all road types, the speed distribution shows a peak between 15 and 25 km/h, suggesting that this 
is the typical cycling speed range. The number of average cyclists decreases sharply as the speed 
increases, indicating that fewer cyclists maintain higher speeds. Moreover, average cyclists per spatial 
unit of 3x3 metres, hold the same distributions for different road types with slight increase for bicycle paths 
as compared to primary roads and motorways, refer to Figure 6.19. 

 

 

 

Figure 6.19: The distribution of speed, delay, flow, and delay frequency versus road functional classes. 

D. Cyclist typology classification using unsupervised learning  

The methodology involved using unsupervised machine learning, specifically the KMeans clustering 
algorithm, to analyse cyclist behaviour and identifying cyclist’s topology and network state in Melbourne 
City. Key features considered for clustering were average speed, average cyclists flow, percent of cyclists 
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stopped and experienced delay, and number of lanes the cyclists use. These features provide insights into 
cycling speed, volume, delays, and road characteristics. The dataset was pre-processed using standard 
scaling to normalise these features. The optimal number of clusters was determined using the Elbow 
Method, which involves plotting the inertia (sum of squared distances of samples to their nearest cluster 
centre) for different numbers of clusters. Based on findings from the Elbow curve, five clusters were 
identified as the optimal number of clusters, where the rate of decrease in inertia begins to slow, indicating 
a balance between underfitting and overfitting. 

Figure 6.20 illustrates the spatial distribution of the five identified clusters across Melbourne City. Each 
cluster is represented by different coloured points on the map, showing the geographical concentration 
and dispersion of various cycling behaviours. Clusters are distributed across different types of roads and 
locations, reflecting diverse cycling activities and conditions. For example, certain clusters are 
concentrated in the city centre and along major roads, indicating areas with higher cycling traffic and 
possibly more congestion. In contrast, other clusters are spread along recreational areas like beaches and 
the Yarra River, suggesting leisure cycling activities. This spatial visualisation helps to understand how 
different cycling behaviours are associated with specific urban areas and infrastructure types. 

The identified clusters can be summarised as following: 

1. Cluster 0: Suburban Commuters: 
Cyclists in this cluster are similar to those in Cluster 1 but exhibit slightly lower speeds and 
frequencies. They predominantly use 4-5 lane main roads and highways, indicating usage of 
broader routes. They distributed across outer suburbs and major roads. 

2. Cluster 1: Typical Daily Cyclists: 
These cyclists are frequent users of the road network, second only to leisure cyclists in number. 
They primarily use 2-3 lane roads, maintaining relatively high speeds compared to other clusters. 
This suggests they are commuters or regular users who navigate efficiently through traffic. The 
distribution in the city centre and along main roads highlights the role of these cyclists in daily 
urban mobility, see Figure 6.21. 

3. Cluster 2: Leisure Cyclists: 
Positioned mainly along beaches, the Yarra River, and other dedicated bike lanes, these cyclists 
maintain the second-highest average speed. They use bike paths and shared corridors, 
highlighting their preference for safe and scenic routes. This cluster underscores the importance 
of recreational cycling infrastructure in urban planning. 

4. Cluster 3: Most Delayed Cyclists: 
Characterised by frequent delays, these cyclists are commonly found around major 
intersections, showing how car-oriented signal timings affect cycling efficiency. They primarily 
use 2-4 lane major and primary roads, indicating that traffic signals and intersections are 
significant bottlenecks for cyclists in these areas. On average over 29% of these cyclist’s 
experience delays ranging from 30 to 110 seconds.  

5. Cluster 4: Fastest Cyclists: 
This cluster includes cyclists maintaining speeds above 29 km/h, likely road bikers or those 
using electric bikes for fast transit. Their distribution outside the city centre and in suburbs and 
major roads indicates high-speed, long-distance travel.  

The findings from this clustering analysis provide valuable insights into the different types of cycling 
behaviour in Melbourne City. Understanding these patterns allows for better planning and management of 
urban cycling infrastructure. For example, improving signal timing at major intersections could reduce 
delays for cyclists, enhancing overall cycling efficiency and safety. Recognising the distribution of leisure 
cyclists can guide the development of more dedicated bike paths, promoting recreational cycling. 
Furthermore, acknowledging the needs of fast cyclists can lead to the creation of dedicated high-speed 
bike-lanes, accommodating different types of cyclists. These insights can help city planners and 
policymakers create a more cyclist-friendly environment, encourage cycling as a sustainable mode of 
transport, and improve urban mobility and health outcomes. 
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Figure 6.20: Spatial distribution of cyclist clusters in Melbourne City, Australia.  

 
Figure 6.21: Boxplots of key cycling metrics by cluster. 
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6.3 Summary of key findings  

Bicycle Safety  
1. Bicycle crashes are more frequent at intersections: Analysis of historical crash data shows 

that 59% of bicycle-involved crashes occur at intersections, compared to 41% of all crashes.  
2. Crashes involving two bicycles are more common on non-intersection: The results show 

mid-block road segments accounts for (61%) as compared to (39%) at intersection. 
3. Fatal bicycle crashes are more distributed on the outskirts: This is possibly due to higher 

speed limits in these areas. 
4. Higher concentrations of harsh braking events in the city centre: This pattern seems frequent 

particularly around shared paths and intersections. 
5. Abnormal events are correlated with actual crashes: The study finds a significant correlation 

between abnormal events (such as harsh braking and swerving) identified from bicycle GPS and 
gyroscope data and actual crashes. 

6. Intersections have a higher correlation between abnormal events and actual crashes: The 
correlation is higher at intersections (0.69 Pearson rank, 0.36 Spearman rho) than at non-
intersection areas (0.50 Pearson rank, 0.26 Spearman rho). 

7. Surrogate safety measures can identify safety hotspots: The study demonstrates that using 
surrogate safety measures from bicycle GPS and gyroscope data can help identify safety 
hotspots, unsafe infrastructure and risky behaviours, providing a proactive measure to improve 
road safety without waiting for actual crashes to occur. 

8. Minor injuries between pedestrians and cyclists are underestimated: The study highlights 
that minor injuries resulting from accidents between pedestrians and cyclists are significantly 
underestimated in police crash data. 

9. GPS and gyroscope data can assess road surface quality: The study finds that y-surface 
readings from gyroscope sensors can be used as a proxy measure to assess road surface quality 
and identify hazardous regions. 

10. Targeted interventions can improve road safety: The study emphasizes the need for targeted 
traffic management and safety interventions, particularly in high-risk zones like the CBD, popular 
biking trails, and shared corridors with pedestrians. 

Bicycle flow efficiency 

Bicycle flow pattern 
11. High Cyclist Density Areas: Central Melbourne, including the CBD and Docklands, has the 

highest cyclist density, indicating these areas are key routes for commuting and recreation. 
12. Key Cycling Routes: High cyclist numbers are seen on major routes like Swanston Street and 

paths along the Yarra River, serving as main corridors for both commuting and leisure. 
13. Consistency regardless of road type: Popular cycling routes remain consistent regardless of 

road type, but dedicated bike lanes increase overall cyclist flow, suggesting infrastructure 
improvements could boost cycling rates. 

Where ride faster? 
14. Cyclist Delay and Speed: Cyclists face longer delays and lower speeds at major intersections 

and in the city centre. Dedicated bike paths improve speed, highlighting the benefits of segregated 
infrastructure. 

15. Impact of Multi-modal Roads: Roads shared with cars show more speed reductions, especially 
in central areas, due to traffic signals and lack of bike lanes. This reduction can be linked to longer 
waiting times at intersections, car-oriented traffic signals, and a lower prevalence of dedicated 
bike lanes. This suggests a need for more dedicated cycling infrastructure to enhance cyclist 
safety and efficiency. 

16. Safety Risks at Minor Intersections: The significant speed reduction on major intersections and 
in the CBD could imply that cyclists might engage in illegal crossing behaviours at minor 
intersections and on local roads, where speed reductions are less evident.  
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Cyclist topology and network state 
17. Cluster 0: Suburban Commuters: Similar to daily cyclists but use 4-5 lane roads and highways, 

showing a pattern of longer-distance commuting from outer suburbs, with slightly lower speed. 
18. Cluster 1: Daily Cyclists: Frequent users of 2-3 lane roads with relatively high speeds, mainly in 

the city centre and along main roads, indicating a focus on daily commuting. 
19. Cluster 2: Leisure Cyclists: Located along recreational routes such as beaches and the Yarra 

River, these cyclists prefer safe, scenic bike paths and maintain high speeds. 
20. Cluster 3: Most Delayed Cyclists: Experience frequent delays at major intersections, 

highlighting the impact of car-oriented signal timings on cycling efficiency. They primarily use 2-4 
lane major roads. On average 29% of these cyclist’s experience delays ranging from 30 to 110 
seconds.  

21. Cluster 4: Fastest Cyclists: Maintain speeds above 29 km/h, typically found on suburban and 
major roads, indicating use by road bikers or for fast transit e-bikers. 
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7 An enhanced computer vision model for traffic conflict prediction 

This section presents the results from the enhanced computer vision model based on vehicle (car) 
trajectory data. As the safety model is thoroughly presented in the interim report, we have included only 
the results from the enhanced computer vision model here. For more detailed information about the safety 
model, please refer to the interim report.  

Computer Vision Model 
The computer vision model used to perform the traffic safety analysis is an object detection model by 
Jocher et al. (2023) called YOLOv8. Yolov8 model are pretrained by using COCO dataset to perform object 
detection and segmentation for common item such as phone, person, chair, etc. The model is chosen 
because of its speed and accuracy that enables real life object detection application. With the available 
dataset, it is hypothesised that the model would be able to detect conflict-related trajectories after model 
retraining is done.  
 
The dataset used to perform the retraining on YOLOv8 model consists of trajectories plot (each plot is 
referred as a single frame), trajectories data and conflict data. To evaluate the model, the main measure 
used is the Mean Average precision (MaP). MaP quantifies the model’s ability to accurately detect and 
classify objects within images frame by calculating the average precision for each class based on 
precision-recall curves. This average precision is then averaged across all classes to provide an overall 
assessment of the model’s performance. Two types of MaP are used for the evaluation of this model: 
MaP50 and MaP50-95. The numbers after “MaP” refers to the percentage of area that intersects between 
the ground truth bounding boxes and the predicted bounding box. This intersection is referred to as 
Intersection of Union (IoU). While the MaP represent the precision of the model in the detection task, the 
IoU represent how accurate the predicted object location is.  
 
Severity Model  
The model was initially trained for the identification of conflict based on their severity level. Conflicts are 
categorised into four categories for both “rear end” and “lane changing” conflicts. The levels are 
categorised into Property Damage Only (PDO) (level 0), Minor Injury (level 1), Major Injury (level 2) and Fatal 
(level 3). The training is conducted with a maximum of 100 epochs (iterations) due to the absence of a 
substantial performance increase beyond this point. This is further supported by the "early stop" feature, 
which ensures that the model ceases training once it reaches peak performance. Different batch sizes 
were also tested during training to monitor changes in performance, as illustrated in Figure 7.1. An example 
of the detection results can be seen in Figure 7.2. 
 

 
Figure 7.1: Changes in MaP over different batch sizes with a maximum of 100 epochs. 
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Figure 7.2: Example of the Detection Result of the Severity Model with batch size of 16 and maximum 100 

epochs.  
 

Based on the results in Figure 7.1, the MaP of the model remains lower than that of the YOLOv8-based 
model, which achieves a MaP50-95 of 53.9% (Joecher et al., 2023). This discrepancy is attributed to the 
limited amount of data available for some conflict levels during training. To address this, an alternative 
method is proposed to improve the MaP of the model. In our approach, we divided the model into several 
models, each focusing on predicting a specific conflict class. However, during the development phase, it 
was determined that the severity class data lacks useful insights for traffic safety analysis. Therefore, it 
was decided to use the cost level of each conflict instead. 

Cost Model 
The cost model focuses on detecting conflicts that are categorised based on the cost of damages incurred. 
Conflicts are divided into 9 different levels: rear-end levels zero to four and lane-change levels zero to 
three, with the corresponding number of observations shown in Table 7.1. Each cost level corresponds to 
a different range of costs. These cost ranges can be calculated using the formulas below, where ( T ) is the 
upper cost boundary and ( τ ) is the lower boundary (calculations are in dollars). 

 

The model is trained with different bounding box sizes: 100x100, 300x300, and 500x500 pixels. Moreover, 
the model, which is separated into 9 different sub-models, each trained to detect a single conflict class, is 
called the Ensemble Model. Ensemble modelling approach where a dedicated sub-model is utilised to 
each conflict class is used to improve the accuracy and performance. 
 

Table 7.1. Training instances distribution 
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The training performance progression for the severity models (Full Model and Ensemble Model) is 
illustrated in Figures 7.3 to 7.5. Some fluctuations are present on the graphs, particularly for Rear-End level 
4 and Lane Change level 3. These fluctuations are attributed to the limited number of instances for these 
two classes, as shown in Table 7.1. The low number of training instances prevented the model from training 
smoothly, resulting in fluctuations during the early stages of the training process.  

 
Figure 7.3: Training Progression on Full and Ensemble Model trained with 100x100 bounding box size 

 
Figure 7.4: Training Progression on Full and Ensemble Model trained with 300x300 bounding box size 
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Figure 7.5: Training Progression on Full and Ensemble Model trained with 500x500 bounding box size 

 
Table 7.2. MaP of the models 

 
 
The results indicate that the models are able to detect the conflicts with excellent performance, as shown 
in Table 7.2. Our proposed ensemble modelling approach significantly outperformed the benchmark (full 
class model), nearly doubling its performance. Figures 7.6 and Figure 7.7 show that the trendline for the 
500x500 bounding box predictions is the closest to the ground truth values. This suggests that the 500x500 
bounding box size is the most optimal for this model. 
 

Figure 7.6: Residual Plot of the Ensemble Model over different Bounding box sizes for the Lower Boundary 
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Figure 7.7: Residual Plot of the Ensemble Model over different Bounding box sizes for the Lower Boundary 

7.1 Summary of key findings 

1. Enhanced computer vision model for conflict prediction: The study presents an enhanced 
computer vision model using ensemble modelling approach based on YOLOv8, an object 
detection model, for traffic safety analysis due to its speed and accuracy.  

2. Model training: The model was retrained using a dataset of trajectories plots, trajectories data, 
and conflict data. 

3. Model performance: The model performance was evaluated using Mean Average Precision 
(MaP), with MaP50 and MaP50-95 being the primary metrics, and achieves a Mean Average 
Precision (MaP50-95) of above 80%. 

4. Cost model: The cost model detects conflicts based on the cost of damages incurred, with 9 
different levels and corresponding cost ranges. 

5. Ensemble modelling approach: The ensemble model, where each sub-model is trained to 
detect a single conflict class, significantly outperforms the full class model. 

6. Optimal bounding box size: The 500x500 bounding box size is found to be the most optimal for 
the model. 

7. Improved performance: The ensemble model nearly doubles the performance of the 
benchmark, achieving excellent detection performance. 
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8 Traffic state distribution reconstruction using physics-informed 
neural network  

 
Accurate traffic state estimation is crucial for effective traffic management in intelligent transportation 
system. Traditional data-driven approaches often require large amounts of training data and may not fully 
capture the underlying physical dynamics of traffic flow. Physics-Informed Neural Networks (PINN) have 
emerged as a promising solution, incorporating the governing physical laws into the neural network 
training process to predict the traffic state with limited available data. However, PINN models face 
challenges such as slow convergence and limited data availability in real-world scenarios. 
 
This section presents findings from the manuscript "Investigating Knowledge Transfer in Residual Physics-
Informed Neural Networks using Connected Vehicles Traffic Data" by Bo Wang, Neema Nassir, Negin 
Yousefpour, and Majid Sarvi, submitted to IEEE Transactions on Intelligent Transportation Systems. The 
study proposes a novel Residual Physics-Informed Neural Network (Res-PINN) architecture for traffic state 
estimation using connected vehicle data. The Res-PINN model incorporates residual connections to 
improve convergence speed and performance. Furthermore, a transfer learning approach is explored to 
leverage knowledge from data-rich scenarios and improve Res-PINN performance in situations with 
limited data availability. 
 
8.1 Data Description 

The study utilises real-world connected vehicle data from a major aggregator of vehicle telematics dataset, 
CompassIOT, focusing on vehicle trips along two key corridors in Melbourne, Australia: the Westgate 
Bridge on the M1 freeway and a section of the M3 freeway near the city centre, as shown in Figure 8.1. 
These corridors are selected due to their importance as major arteries in Melbourne and their high traffic 
volumes and varying traffic patterns across different time. Moreover, the selected sections are city-bound 
and have no incoming or outgoing traffic, making them suitable for modelling using the proposed physics-
based approach.  
 

 
Figure 8.1: The satellite images of two selected traffic corridors with polygons. Source: Imagery Esri. 

 
The vehicle telematics dataset contains historical travel information for individual vehicles, such as 
location and speed, which is reported with a frequency of every 1 to 12 seconds. By treating these vehicles 
as probe vehicles, the traffic speed distribution along the selected corridors can be reconstructed. The raw 
data is processed using interpolation for each trip to give every second a location and speed value. The 
final speed distribution is a matrix with a temporal resolution of 3 seconds and a spatial resolution of 30 
meters. 
 
Two datasets are created based on the processed speed distributions: 

• probe: the raw data points collected by connected vehicles, which only has 0.62% and 1.69% of 
the total data points for the M3 and M1 corridors, respectively. 
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• random: randomly selects 5% data points from the entire distribution and has more samples. 
 
These two training data availabilities provide a scenario to test transfer learning from a richer training 
dataset to one with limited samples.  
 
8.2 Method and Results 

The proposed Res-PINN model incorporates residual blocks to improve gradient flow and speed up 
convergence compared to traditional PINN. The residual connections allow the network to learn residual 
mappings instead of direct mappings, which facilitates the training of deep neural networks. The Res-PINN 
architecture is designed to effectively extract features from the input data and produce accurate traffic 
state estimations. 
 

 
Figure 8.2:  Overall workflow of PINN. 

 
The Res-PINN model's loss function includes two parts: the neural network loss (Mean Square Error 
between the predicted and ground truth speed values) and the PDE loss (residual function of the governing 
traffic flow dynamics described by the Lighthill-Whitham-Richards model), as illustrated in Figure 8.2. By 
minimising the total loss, the Res-PINN model learns to estimate traffic speed while satisfying the 
underlying physical laws. 

The Res-PINN model is evaluated on the M1 and M3 datasets using metrics such as Mean Squared Error 
(MSE), Mean Absolute Percentage Error (MAPE), and Feature Similarity Index Measure (FSIM). The results 
demonstrate that Res-PINN outperforms the baseline models, achieving lower MSE, lower MAPE, and 
higher FSIM. For instance, on the M3 freeway corridor with the probe dataset (A.1), Res-PINN achieves an 
MSE of 25.497, MAPE of 0.227, and FSIM of 0.586, compared to the baseline PINN model's MSE of 27.076, 
MAPE of 0.231, and FSIM of 0.549. This represents improvements of 5.8% in MSE, 1.7% in MAPE, and 6.7% 
in FSIM. 

Transfer learning is employed to initialise a Res-PINN model trained on the limited probe dataset with 
weights learned from the richer random dataset. This significantly improves the speed estimation 
performance on the probe dataset compared to training from scratch. For the M3 freeway corridor, transfer 
learning reduces the MSE from 25.497 to 23.287 (an 8.7% improvement), MAPE from 0.227 to 0.201 (an 
11.5% improvement) and increases the FSIM from 0.586 to 0.599 (a 2.2% improvement). 
 
A visual comparison of the predicted speed distributions in Figure 8.3 further highlights the benefits of 
transfer learning. The models utilising transfer learning (target TL) exhibit a closer resemblance to the 
ground truth compared to the models trained solely on the limited probe dataset (target). This is 
particularly evident in the more accurate representation of speed variations and congestion patterns 
across both the M3 and M1 freeway corridors. 
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Figure 8.3: Comparison of traffic speed predictions using different Res-PINN models. The source model is 
trained on a richer dataset (A.2), while the target model is trained on a limited dataset (A.1). The target (TL) 
model utilises transfer learning from the source model. 
 
8.3 Conclusion 

The proposed Res-PINN model and transfer learning approach enable accurate traffic speed estimation 
using limited connected vehicle data by leveraging physical knowledge and learned features from data-
rich scenarios. The incorporation of residual blocks improves the model's convergence speed and 
performance compared to traditional PINN architectures. The transfer learning strategy significantly 
enhances the estimation accuracy when dealing with limited data availability, as demonstrated by the 
results on the M1 and M3 freeway corridors in Melbourne, Australia. 
 
The findings presented in this section demonstrate the effectiveness of physics-informed learning and 
knowledge transfer in enhancing traffic state reconstruction. This approach paves the way for more 
efficient intelligent transportation systems, enabling better traffic management and control strategies. 
Future research directions should include extending the Res-PINN model and transfer learning approach 
to larger road networks, investigating the integration of additional data sources to enhance estimation 
accuracy, and developing real-time implementations for practical deployment in intelligent transportation 
systems. 

8.4 Summary of key findings 

1. The study proposes a novel Residual Physics-Informed Neural Network (Res-PINN) architecture 
for traffic state estimation using connected vehicle data. 

2. The Res-PINN model incorporates the governing physical laws of traffic flow into the neural 
network training process to improve accuracy. 

3. The study explores transfer learning to leverage knowledge from data-rich scenarios and 
improve Res-PINN performance in situations with limited data availability.  

4. Real-world data from two key corridors in Melbourne, Australia (Westgate Bridge on M1 freeway 
and a section of M3 freeway) was used. Two datasets were created: "probe" (0.62% and 1.69% of 
total data points for M3 and M1) and "random" (5% of total data points). 

5. The Res-PINN model outperforms baseline models, achieving lower Mean Squared Error (MSE), 
lower Mean Absolute Percentage Error (MAPE), and higher Feature Similarity Index Measure 
(FSIM). 

6. Transfer learning significantly improves speed estimation performance on the probe dataset, 
reducing MSE by 8.7%, MAPE by 11.5%, and increasing FSIM by 2.2%. 

7. The predicted speed distributions using transfer learning exhibit a closer resemblance to the 
ground truth compared to models trained solely on the limited probe dataset. 
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9 Driving style variability at intersection 

Road intersections are pivotal points in urban transport systems where safety risks, emissions, and fuel 
consumption are notably higher due to frequent fluctuations in vehicle acceleration, deceleration, and 
queues. Understanding the diverse driving styles and speed distributions at these intersections is essential 
for accurately forecasting safety risks, emissions, and fuel consumption. Moreover, this understanding 
can inform educational initiatives aimed at promoting safe and sustainable driving practices. This study 
aims to uncover spatiotemporal driving behaviour patterns at intersections by leveraging telematics data 
and intersection signal settings. 
  
A case study in Melbourne was conducted, utilising over 41 million path trajectories from 2022, provided 
by Compass IoT. Additionally, signal setting data was extracted from the Sydney Coordinated Adaptive 
Traffic System (SCATS) to enrich the analysis. By examining the interaction between vehicles and traffic 
signals, this study seeks to identify distinct driving styles and their frequency of occurrence, offering 
valuable insights for urban planning and traffic management. 
 
 
9.1 Methods 

To analyse driving behaviours at intersections, Dynamic Time Warping (DTW) was employed for sequential 
clustering of path trajectories based on speed attributes. The DTW algorithm allows for the comparison of 
time-series data that may vary in speed or duration, providing a more meaningful measure of similarity 
between sequences than traditional metrics like Euclidean distance. This method is particularly suitable 
for capturing the temporal dynamics of driving behaviours. 
  
The clustering process involved integrating the K-means algorithm with DTW. The initial centroids were 
selected using the k-means++ initialisation method to ensure a diverse representation of the data. During 
the assignment step, each sequence was assigned to the nearest centroid based on the DTW distance. 
The update step utilised the DTW Barycentre Averaging (DBA) technique to find the sequence that 
minimised the total DTW distance within each cluster, serving as the new centroid. The assignment and 
update steps were iterated until convergence. 
  
To determine the optimal number of clusters (k), both the Elbow Method and the Silhouette Score were 
used. The Elbow Method involved plotting the within-cluster sum of squares (WCSS) against the number 
of clusters to identify the ‘elbow’ point. The Silhouette Score measured how similar an object was to its 
own cluster compared to other clusters, providing a robust indicator of cluster quality. The integrated 
approach combined these methods to select the most suitable number of clusters. 
  
Traffic signal data was incorporated into the trajectory records by dividing intersection legs into cells. Each 
leg was segmented into 40-metre cells, corresponding to the data update frequency of Compass IoT. The 
signal state (green, red, or yellow) for each trajectory was determined based on the vehicle’s location and 
the corresponding SCATS data. 
  
9.2 Findings and Discussion 

Clustering Results 
The suggested sequential clustering approach is employed for every scenario, determining the optimal 
number of clusters, the representative trajectory for each cluster, and the cluster sizes. Table 9.1 presents 
scenario attributes alongside the best cluster number (K), associated inertia, and silhouette score for each 
scenario's K value. It's notable from the table that each scenario comprises five clusters, indicating five 
distinct driving behaviours within intersections. 
 

Table 9.1. Clustering Results. C: Car, CV: Commercial vehicle, G: Green, NRH: Non-rush hours, 
RH: Rush hour, S: Straight, R: Red, Y: Yellow. 

Count Hour type vehicle type Movemen
t direction 

Traffic 
signal K Inertia 

score 
Silhouett
e score 
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1885 NRH C S G 5 0.25 0.23 
2049 RH C S G 5 0.24 0.24 
2780 NRH CV S G 5 0.23 0.18 
2766 RH CV S G 5 0.21 0.22 
1172 NRH C S R 5 0.18 0.18 
1122 RH C S R 5 0.20 0.23 
2476 NRH CV S R 5 0.16 0.21 
2346 RH CV S R 5 0.17 0.18 

53 NRH C S Y 5 0.18 0.19 
67 RH C S Y 4 0.18 0.25 
97 NRH CV S Y 5 0.18 0.17 
69 RH CV S Y 4 0.21 0.25 

 
The table also highlights an important observation regarding scenarios where drivers encounter yellow 
signals: a limited number of observations (less than 100) have been identified. This outcome was expected 
due to the short duration of yellow signals, resulting in fewer vehicles encountering them. However, it's 
essential to note that because scenarios with yellow signals are based on a smaller sample size compared 
to scenarios with green or red signals, there might be some limitations in the reliability and 
representativeness of the clustering results. 
 
Driving Style 
 
The analysis revealed sixteen distinct driving scenarios, each characterised by different combinations of 
vehicle type, time (rush hour or non-rush hour), and traffic signal status (green, yellow, or red). The key 
findings from the clustering analysis are summarised as follows: 
  
Green Signal Phases 
 

Figure 9.1: Clustering results for scenarios with green signal phases 
 
According to Figure 9.1, During green signal phases, vehicles generally maintained speeds between 50% 
to 70% of the speed limit. A small cluster (6.2% to 7.4%) of drivers exceeded the speed limit, with this risky 
behaviour more prevalent among passenger cars (7.4%) compared to commercial vehicles (6.2% to 6.7%). 
Drivers of commercial vehicles, including both light and heavy commercial vehicles, demonstrated 
increased caution. This behaviour is likely attributed to the higher perceived consequences of accidents 
and the challenges associated with sudden braking. 
  
For commercial vehicles, two predominant clusters were identified, reflecting common driving patterns. 
These drivers decelerated upon approaching the intersection and accelerated upon exiting. Differences 
between clusters suggested varying levels of caution, with some drivers slowing down earlier and 
approaching the intersection at lower speeds. 
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Passenger car drivers exhibit distinct behaviours compared to those observed with commercial vehicle 
operators. The orange cluster resembled the cautious driving style of commercial vehicles, while the blue 
cluster represented drivers who maintained very low speeds before accelerating cautiously through the 
intersection. This variation could be attributed to the diverse socioeconomic characteristics of passenger 
car drivers. 
  
Red Signal Phases 
 

 

Figure 9.2: Clustering results for scenarios with red signal phases 
 
Figure 9.2 shows that during red signal phases, a significant cluster (3.7%) of passenger cars was observed 
crossing intersections during red signals, particularly during rush hours. This behaviour poses substantial 
safety risks and represents a traffic violation. Commercial vehicles, in contrast, did not exhibit this 
behaviour, indicating greater adherence to traffic rules. 
  
Three major clusters, represented by green, orange, and red colours, encompassed 60% to 80% of driving 
styles during red signals. These clusters indicated cautious driving, with drivers decelerating to near zero 
before crossing the intersection and then accelerating gradually. These clusters can be aggregated for 
inclusion in simulation software and traffic analysis. 
  
Two additional clusters (blue and purple) represented drivers who maintained slow speeds consistently 
without significant speed reduction before or after the intersection. These behaviours were more prevalent 
among passenger cars and during rush hours, suggesting that traffic congestion might influence this 
driving style. 
  
Yellow Signal Phases 
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Figure 9.3: Clustering results for scenarios with yellow signal phases 
 
According to Figure 9.3, during yellow signal phases, most drivers adopted cautious behaviours, stopping 
behind the intersection. This low-risk style was predominant across all scenarios, particularly among 
commercial vehicles during rush hours, with over 74% of drivers adhering to this approach. 
  
Conversely, a risky driving style was observed, where drivers crossed the intersection at high speeds during 
the yellow signal and then decelerated afterward. This behaviour was more common during rush hours and 
among passenger cars, though commercial vehicles showed greater restraint. 

  
9.3 Conclusion 

Understanding and analysing speed profiles and driving styles within intersections is crucial for enhancing 
safety and efficiency in urban environments. This research employed telematics data and intersection 
signal settings, using sequential clustering to reveal distinct driving behaviours at intersections. The study 
provides valuable insights for urban planning, traffic management, and educational initiatives to promote 
safe and sustainable driving practices. 
 
9.4 Summary of key findings 

1. Distinct driving styles at intersections: The study identifies 16 distinct driving scenarios, each 
characterised by different combinations of vehicle type, time, and traffic signal status. 

2. Green signal phases: During green signal phases, most vehicles maintain speeds between 50% 
to 70% of the speed limit, while a small cluster of drivers exceed the speed limit, more prevalent 
among passenger cars. 

3. Red signal phases: During red signal phases, a small yet significant cluster of passenger cars 
cross intersections during red signals, posing safety risks, while commercial vehicles show 
greater adherence to traffic rules. 

4. Yellow signal phases: During yellow signal phases, most drivers adopt cautious behaviours, 
stopping behind the intersection, while a risky driving style is observed, more common during 
rush hours and among passenger cars. 

5. Driving style variability: The study reveals variability in driving styles, with commercial vehicles 
showing increased caution and passenger cars exhibiting diverse behaviours. 

6. Rush hour and vehicle type effects: Rush hour and vehicle type have significant effects on 
driving behaviours, with passenger cars more likely to engage in risky behaviours during rush 
hours. 

7. Intersection safety and efficiency: Understanding driving styles at intersections is crucial for 
enhancing safety and efficiency in urban environments. 
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10 Estimating emissions using traffic reconstructed trajectories 

In this section, we present emission estimations using reconstructed vehicle trajectories (presented in 
Section 4). The study aims to showcase the value of vehicle trajectory data at scale and assess the impact 
of varying traffic conditions on emission levels based on real trajectories, as opposed to simulated 
trajectories. This method is particularly effective in capturing spatio-temporal variability in traffic flow, 
congestion, and queues, and their subsequent impact on emissions. 
 
Key aspects of the study include: 
 

1. Impact of Traffic Condition on Emission: Using real trajectory data allows for a more accurate 
assessment of traffic flow variations and their impact on emission levels. This research 
addresses the gap in emission estimation by utilising dense trajectory data for reconstructing 
traffic states, unlike previous studies that relied on sparse or simulated data. 

2. Spatio-Temporal Variability of Emission: The approach captures the dynamic nature of traffic, 
offering insights into how emissions vary over time and space. 

3. Effect of Electric Vehicles (EVs) on Emission: By modelling different compositions of EVs 
within the existing fleet, the study examines how varying percentages of EV adoption influence 
overall emissions. 

Understanding traffic dynamics is crucial for optimising transportation systems and enhancing urban 
mobility. Vehicle trajectory reconstruction plays a significant role in analysing fuel consumption and 
emissions, particularly at intersections. The primary objective of this study is to provide insights into how 
effective traffic management and the adoption of sustainable transportation options, such as EVs, can 
mitigate environmental impacts. 
 
By leveraging real trajectory data, this research offers valuable information for developing strategies aimed 
at reducing emissions and promoting sustainable urban transport solutions. 
 
10.1 Case study with reconstructed trajectories:  

The effect of varying traffic conditions on emissions is a critical aspect of our study. This approach 
significantly improves the accuracy of emission estimations by leveraging dynamic, real-world traffic 
conditions derived from reconstructed trajectories, thanks to the unprecedented potential provided by 
connected vehicle (CV) data. 

Furthermore, this method assists in understanding how emissions vary over time and across different 
locations along road segments, considering factors such as traffic volume, congestion, and queues. We 
used emission profiles based on existing trajectories as the baseline and explored the impact of different 
compositions of electric vehicles (EVs) within the current fleet. Specifically, we simulated scenarios where 
10% and 20% of the existing fleet were randomly transformed into EVs. Emissions were then estimated 
and compared to the baseline case to evaluate the effects of these changes. 

This approach replicates various levels of traffic congestion and dynamics to analyse their impact on traffic 
emission. Figure 10.1 showcases a sample of these reconstructed trajectories within the time window of 
8:00 am to 8:30 am on a typical weekday. In the figure, red bars indicate periods when the traffic signal is 
red at the stop line, while the absence of these bars signifies green light phases, allowing vehicles to 
proceed through the intersection. The black lines represent the actual observed paths from connected 
vehicles, whereas the grey lines show the reconstructed trajectories.   

10.2 Emission estimation using optimised trajectories 

To evaluate the emission a second-by-second emission function has been used that were developed from 
the vehicle trajectory data (Panis et al., 2006). The emission functions for each vehicle are formulated using 
instantaneous speed and acceleration as parameters through non-linear multiple regression techniques. 
The equation is below: 
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𝐸𝐸𝑛𝑛(𝑡𝑡)  =  max�𝐸𝐸0, 𝑓𝑓1  + 𝑓𝑓2𝑣𝑣𝑛𝑛(𝑡𝑡) + 𝑓𝑓3𝑣𝑣𝑛𝑛(𝑡𝑡)2  + 𝑓𝑓4 𝑎𝑎𝑛𝑛(𝑡𝑡) + 𝑓𝑓5𝑎𝑎𝑛𝑛(𝑡𝑡)2 + 𝑓𝑓6𝑣𝑣𝑛𝑛(𝑡𝑡)𝑎𝑎𝑛𝑛(𝑡𝑡)�                (Eq. 10.1) 

where 𝑣𝑣𝑛𝑛(𝑡𝑡) and 𝑎𝑎𝑛𝑛(𝑡𝑡) are the instantaneous speed and acceleration of vehicle 𝑛𝑛  at time 𝑡𝑡 . 𝐸𝐸0 is a lower 
limit of emission (g/s) specified for each vehicle and pollutant type, and 𝑓𝑓1to 𝑓𝑓6 are emission constants 
specific for each vehicle and pollutant type determined by the regression analysis. Table 10.1 gives the 
insights of the CO2 emission functions. 

After reconstructing the vehicle trajectories based on various traffic states at different times of the day and 
days of the week, we calculated the emissions for each scenario. This analysis helps us examine how 
different traffic states and conditions affect emissions. 

Table 10.1:  CO2 Emission functions. 

 

 

Figure 10.1: Reconstructed Trajectories Based on CV Data, Signal Information, and Traffic Count Data. 

10.2.1 Impact of Different Traffic Condition on Emission  
Traffic conditions significantly influence vehicle emissions, as demonstrated by the patterns observed in 
both weekday and weekend data, see Figure 10.2 and Figure 10.3. 

During peak hours, particularly on weekdays, emissions exhibit high variability and intensity, especially 
upstream of intersections. This fluctuation is primarily due to the unpredictable nature of traffic 
congestion, stop-and-go traffic, and queue formation. As vehicles approach intersections and slow down, 
emission levels tend to decrease. This pattern highlights the importance of using real trajectory data to 
capture the complex relationship between traffic dynamics and emissions, as simulation-based methods 
may not fully represent these nuances. 

Conversely, during off-peak hours and in less congested periods, emission profiles show a more uniform 
distribution across time and space. This uniformity is attributed to smoother traffic flow, with fewer 
interruptions and less frequent acceleration/deceleration cycles. The contrast between peak and off-peak 
emissions underscores the significant role that traffic management can play in reducing overall vehicle 
emissions. 

1. Morning peaks on weekdays produce more variable emissions compared to afternoon peaks, 
which show a more uniform distribution, see Figure 10.2. 

2. Weekend peaks, while following similar patterns to weekdays, occur later in the morning and 
exhibit lower overall emission fluctuation due to reduced traffic variability, refer to Figure 10.3. 

3. The relationship between vehicle speed, acceleration, and emissions is evident, with emissions 
decreasing as vehicles slow down near intersections or at the end of queues. 
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10.2.2 Spatio-temporal Variability of Emission 
The analysis reveals distinct spatio-temporal patterns in vehicle emissions. Emission levels are closely 
linked to specific times of day and days of the week. 

On weekdays, emission hotspots are concentrated during early morning and late afternoon peak hours, 
corresponding to typical commute times. These hotspots are particularly pronounced far-distant 
upstream of intersections, where traffic congestion and queue formation are more likely to begin. The 
spatial distribution of emissions during these peaks is characterised by higher intensities at a distance 
from intersections, gradually decreasing as vehicles approach and slow down. 

Weekends display a different temporal pattern, with peak emissions occurring later in the morning, 
typically between 10:30 and 11:30 AM. Despite this shift in timing, the spatial distribution of emissions on 
weekends follows a similar pattern to weekdays, with higher intensities upstream of intersections during 
peak hours. 

1. The spatio-temporal variability of emissions is closely linked to traffic volume and flow conditions. 
2. Off-peak periods, both on weekdays and weekends, show more consistent emission patterns 

across time and space, indicating the potential benefits of encouraging off-peak travel. 
3. The observed patterns suggest that targeted measures addressing high-emission zones and peak 

traffic conditions could be more effective in reducing overall emissions. 
4. The use of real trajectory data reveals the complex interplay between traffic dynamics and 

emissions, capturing localised effects that might be missed in more generalised models. 

These findings underscore the importance of considering both spatial and temporal factors in urban 
planning, traffic management, and emission reduction strategies. They also highlight the potential for data-
driven approaches based on real trajectory data to inform more effective and tailored interventions for 
improving air quality in urban environments. 
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Figure 10.2: Vehicle trajectories and emission heatmaps for weekdays (2022-09-26 and 2022-09-27), 
showing peak periods from 07:30 to 08:30 (left & centre) and off-peak period from 21:30 to 22:00 (right).  
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Figure 10.3: Vehicle trajectories and emission heatmaps for weekends (2022-09-24 and 2022-09-25), 
depicting peak periods from 10:30 to 11:30 (left & centre) and off-peak period from 21:30 to 22:00 (right).  

10.2.3 Effect of Electric Vehicles (EVs) on Emission 
In this section, we evaluated different scenarios with varying electric vehicle (EV) compositions to assess 
their impact on emissions within the existing fleet based on real-world trajectories. Two scenarios were 
developed and compared to a baseline scenario. The baseline represents the current situation with only 
conventional internal combustion engine vehicles (non-EVs), depicted in black in Figure 10.4. The two 
alternative scenarios involve a random conversion of 10% and 20% of the existing fleet to EVs. These 
scenarios are based on a reasonable assumption that EV penetration in the market could reach 
approximately 10% and 20% over the next 5 to 10 years, respectively. This analysis helps us understand 
the potential impact on total daily emissions. 
 
As shown in Figure 10.4, the emission reductions roughly correspond to the percentage of EVs in the fleet, 
as applied to a real-world case study on Hoddle Street in Melbourne, Australia. For instance, a 10% 
conversion to EVs results in approximately a 10% reduction in emissions. With an increase in the EV 
composition to 20%, there is a 25.2% reduction in emissions during weekends and a 24.9% reduction 
during weekdays with a 20% EV composition. This indicates a non-linear improvement, suggesting further 
research may be required to better understand the exact effect of EV’s on emissions.   
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These findings, however, demonstrate that penetration of EVs in the fleet can significantly reduce 
emissions, contributing to greener, more sustainable, and lower-carbon transport systems. Additionally, 
the data reveals no significant difference in emission reductions between weekends and weekdays as EV 
composition increases. This consistency suggests that the benefits of EV adoption in terms of emission 
reductions may be robust across different days of the week. 
 

 
Figure 10.4: Impact of electric vehicle (EV) adoption on total emissions (Metric Ton of CO2)  for weekends 
and weekdays 

We also examined emissions with different EV compositions using high-resolution data to better 
understand the impact of EVs and their spatio-temporal distribution. Two sets of metrics were employed 
to study this effect in greater detail. 
 
The first metric used is emission (grams of CO2) per vehicle per second, as shown in Figure 10.5. It is 
important to note that the emission estimates are calculated using Equation 10.1, which is based on 
vehicle speed and acceleration. In other words, emissions decrease when vehicles move at slower speeds 
or are decelerating.  
 
From Figure 10.5, it is evident that on average, each vehicle produces less emission per second during rush 
hours. This trend is observed on weekdays, which exhibit two peaks (morning and afternoon), and on 
weekends, which show a single peak during late morning. Conversely, during off-peak hours, each vehicle 
produces more emissions on average, likely due to higher speeds and accelerations when traffic is less 



   
 

 82 

congested. These findings suggest that implementing effective speed limits could help reduce emissions, 
in addition to increasing the adoption of EVs. 
 

 
Figure 10.5: Average emission (grams of CO2) per vehicle per second 

Given that vehicles produce more emissions during off-peak hours, we were also interested in comparing 
the impact of additional vehicle volume during peak hours with lower volume but higher emission rates per 
vehicle during off-peak hours. To explore this, a second metric, emission per meter, was used to show how 
emissions change at different times of the day.  
 
As shown in Figure 10.6, the overall emission per meter is higher during peak hours compared to off-peak 
hours. Although vehicles on average produce less emission during peaks due to lower speeds and 
acceleration, the higher number of vehicles during peak times results in overall higher emissions, despite 
the lower emission rate per vehicle. The data also show that increasing the proportion of EVs results in 
smoother and significantly lower emissions across different days, both on weekdays and weekends. 
 

 
Figure 10.6: Average emission (grams of CO2) per vehicle meter travelled  

These findings not only highlight the positive impact of increasing the EV composition in the fleet but also 
underscore the importance of speed management in controlling emissions. Therefore, a combination of 
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effective speed management and increased EV adoption could serve as an optimal strategy for reducing 
emissions.  
 
The most important observation to be made from this analyses is perhaps the opportunity to use vehicle 
trajectory data and fusion models with count data, for measurement of traffic emissions.  
 
10.3 Summary of key findings 

The study provides an unprecedented understanding of tailpipe emissions at scale, utilising real-world 
data and capturing the true dynamics on the road, which offers superior insights compared to traditional 
simulation models. The key findings emphasise the significant role of traffic volume and congestion in 
determining CO2 emissions, with a clear distinction between the effects of these two factors. 
 

Impact of traffic volume and congestion on emissions: 
1. Real trajectory data captures emission intensity and variability more accurately than simulated 

methods. 
2. Unpredictable traffic congestion leads to variable emissions. Reducing congestion and flow 

uncertainty is crucial for improving emission profiles. 
3. Emissions are closely tied to traffic volume and flow, varying by time of day and day of the week. 

Morning peaks on weekdays produce more variable emissions compared to afternoon peaks, 
which show a more uniform distribution. 

4. Weekend peaks, while following similar patterns to weekdays, occur later in the morning and 
exhibit lower overall emission fluctuation due to reduced traffic variability. 

5. The relationship between vehicle speed, acceleration, and emissions is evident, with emissions 
decreasing as vehicles slow down near intersections or at the end of queues. 

 
Spatio-temporal variability of emission: 
6. Peak emissions concentrate at specific times and locations, with highest intensity far-distant 

upstream of intersections, decreasing as vehicles slow down approaching intersections or 
queue ends.  

7. Both emission intensity and variability are higher during peak hours on weekend and weekdays.  
8. Off-peak periods, both on weekdays and weekends, show more consistent emission patterns 

across time and space, indicating the potential benefits of encouraging off-peak travel. 
9. The use of real trajectory data reveals the complex interplay between traffic dynamics and 

emissions, capturing localised effects that might be missed in more generalised models. 

Effect of Electric Vehicles (EVs) on Emission 
10. Impact of Increased EV Adoption: Introducing 10% and 20% EV compositions in the vehicle 

fleet significantly reduces emissions, highlighting the importance fleet composition in total 
traffic emissions. 

11. Emission Per Vehicle Per Second: Emissions per vehicle per second are lower during rush 
hours due to reduced speeds and acceleration but increase during off-peak hours when vehicles 
travel (and/or accelerate) faster. This suggests that effective speed management can further 
reduce emissions alongside EV adoption. 

12. Emission Per Meter: Despite lower emissions per vehicle during peak hours, overall emissions 
per meter are higher due to increased traffic volume and congestion. The adoption of EVs 
smooths and lowers emissions consistently throughout the day, both on weekdays and 
weekends. 

13. In conclusion, combining effective speed management strategies with increased EV adoption 
provides an optimal solution for minimising emissions and promoting a sustainable, low-carbon 
transportation system. 
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11 Visualisation and interactive dashboard  

Data visualisation plays a crucial role in transforming complex information into easily understandable and 
actionable insights. In the context of traffic management, visualising traffic data can help identify patterns, 
trends, and anomalies that may not be apparent in raw data formats. To harness the power of data 
visualisation and enable traffic managers and researchers to gain valuable insights more effectively, we 
developed an interactive data visualisation dashboard that focuses on evaluating traffic speed reliability 
using connected vehicle data. 
 
Although connected vehicle data in this project only represents around 2% of total traffic, they capture 
important traffic features and provide valuable insights into traffic conditions. By leveraging this data 
source, the dashboard aims to provide a user-friendly interactive interface for exploring and understanding 
traffic speed reliability, making it accessible to a wider audience beyond data analysts and experts. The 
dashboard presents key traffic metrics, patterns, and trends in a visually intuitive manner, facilitating data-
driven decision-making and supporting real-time monitoring and analysis of traffic conditions. 
 
The current demo version of the dashboard introduces two main functions: traffic overview and speed 
reliability evaluation. These functions provide users with a high-level understanding of traffic conditions 
and performance, as well as the ability to assess the reliability of travel times on specific routes based on 
the connected vehicle data. By focusing on this representative sample of traffic data, the dashboard 
enables users to gain actionable insights into traffic speed reliability, which can help inform traffic 
management strategies and improve overall traffic conditions. 
 
11.1 Traffic Overview 

The traffic overview page (Figure 11.1) serves as the landing page for the dashboard, providing users with 
a summary of key traffic metrics and conditions. The page consists of three interactive visualisation 
subplots that display different aspects of traffic information. 
 

 
Figure 11.1: Traffic overview page of the iMOVE Australia data exploration dashboard. The page includes 
three interactive subplots showing (a) trip starting locations, (b) start/end points, and (c) an animation of 

auto and HCV vehicles. 
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The first subplot on the left shows the trips starting locations, with the map cantered around the Melbourne 
metropolitan area. Users can adjust the map view by zooming in or out and moving the map. The subplot 
includes a settings panel that allows users to customise the visualisation, such as changing the radius of 
the plotted points, the colour ramp, and the number of buckets for data aggregation. 
 
The central subplot displays the start and end points of trips, with the ability to select a specific trip using 
the "Trip Start/End" drop-down menu. The selected trip is highlighted on the map, showing the start and 
end locations and the connecting route. The map height can be adjusted using the "3D Height" slider, 
providing a 3D perspective of the trips. 
 
The third subplot on the right presents an animation of auto and HCV (heavy commercial vehicle) 
movements over time. The animation shows the vehicles' trajectories, with different colours representing 
cars and HCVs. The subplot includes a timeline slider, allowing users to control the animation and view 
vehicle positions at specific times. The legend indicates the types of vehicles shown (cars and HCVs), and 
the animation speed is displayed in the lower-right corner. 
 
All three subplots are interactive and synchronised, meaning that when a user changes the position or 
zoom level of one map, the other two maps will update accordingly. This enables users to maintain a 
consistent view across all subplots while exploring different aspects of the traffic data. 
 
11.2 Travel Speed Reliability Evaluation 

The travel speed reliability evaluation feature allows users to assess the consistency and predictability of 
travel times between specific locations. This feature is available in two modes: single-point evaluation 
(Figure 11.2) and point-to-point evaluation (Figure 11.3). 
 

 
Figure 11.2: Single-point travel speed reliability evaluation. The map displays trips passing through a 

selected location, with the reliability explorer showing speed statistics for the chosen day of the week 
and vehicle type. 

 
In the single-point evaluation mode, users can select a location on the map and specify conditions such 
as the day of the week and vehicle type (e.g., cars or HCVs). The dashboard then queries the database for 
trips passing through the selected location that match the specified criteria. The resulting trips are 
visualised on the map, and their travel speed statistics, including the average speed and speed 
distribution, are displayed in the "Reliability Explorer" panel on the right side of the screen. 
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Figure 11.3: Point-to-point travel speed reliability evaluation. The map shows trips between two selected 
points (A to B) on La Trobe Street in Melbourne CBD, with the speed reliability statistics displayed in the 
bottom-right corner. 
 
The point-to-point evaluation mode allows users to select two points (A to B) on the map and specify the 
desired conditions, such as the start time, day of the week, and vehicle type. In the example shown in 
Figure 11.3, the selected points are located on La Trobe Street in the Melbourne CBD. The dashboard 
queries the database for trips that match the specified criteria and travel between the selected points. 
Particularly, Figure 11.3 highlights the trips found between points A and B, while the "Point-to-Point" panel 
on the right side displays the speed reliability statistics for the selected trips. In this example, the average 
speed for cars traveling from point A to point B on La Trobe Street is 16.8 km/h, with a coefficient of variation 
(a measure of speed variability) of 0.3. The speed profile graph in the bottom-right corner shows the 
distribution of speeds along the selected route, allowing users to identify potential bottlenecks or 
congestion points. 
 
By providing both single-point and point-to-point evaluation modes, the travel speed reliability feature 
enables users to assess travel time consistency and variability at specific locations or along specific 
routes. This information can be valuable for traffic managers and planners in identifying problem areas, 
evaluating the effectiveness of traffic management strategies, and communicating expected travel times 
to the public. 
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12 Conclusion  

This research project aimed to investigate opportunities for effectively utilising and integrating vehicle and 
bicycle location and gyroscope data, alongside other emerging technologies and data sources, into 
advanced traffic management systems and practices. The scope of the project included the analysis of 
connected vehicle (CV) data, GPS, and gyroscopic data from bicycles to improve safety, efficiency, and 
environmental sustainability in urban traffic systems. The primary objective was to develop advanced 
methodologies, identify new use cases, and derive actionable insights for traffic management. 
 
The methodology adopted in this project involved a multi-stage framework, beginning with an extensive 
exploratory analysis of vehicle position data. This analysis covered penetration measures, intersection 
turn volumes, and speed profiles at intersections. High-resolution CV data was integrated with traditional 
sensor data, as well as bicycle telematics and historical crash data. Techniques such as sequential spatial 
mapping, clustering, deep reinforcement learning (DRL), and physics-informed neural networks (PINNs) 
were employed to achieve objectives such as trajectory reconstruction, intersection safety and efficiency 
optimisation, proactive road safety measures for vulnerable road users, traffic state and congestion 
estimation, driving style variability at intersections, and emission estimation. A visualisation dashboard 
was also developed to facilitate real-time traffic monitoring. 
 
The applications of integrated data span various aspects of traffic management. For instance, advanced 
AI models using CV data can optimise traffic signals, reducing delays and improving travel times. Surrogate 
safety measures derived from bicycle data can proactively identify hazardous locations, underrepresented 
risky behaviours and hotspots that are not detectable from crash data alone, and can be used proactively 
to prevent accidents. The visualisation dashboard facilitates real-time traffic monitoring, enhancing 
decision-making capabilities for traffic managers. 
 
Analysis revealed that bicycle-involved crashes were more frequent at intersections (59%) compared to 
mid-block segments (41%), with a denser concentration in the CBD and city/town centres. Moreover, high 
braking events, indicative of potential crashes, were concentrated in the central metropolitan area, 
particularly around intersections and cycling paths. Gyroscope data identified significant variations in road 
surface quality, with poorer conditions often found in areas with complex traffic networks such as CBDs, 
city centres, and popular cycling tracks. This information is crucial for targeting road maintenance and 
improving cyclist safety. 
 
Spatiotemporal correlation analysis conducted in this project showed that harsh braking and swerving 
events recorded by gyroscope sensors (for cars and bicycles) were strong indicators of potential crash 
sites. This surrogate measure can be used to proactively identify and mitigate dangerous locations. The 
combination of exploratory spatial and correlation analysis indicated a high correlation between 
gyroscope and GPS data with actual crash events, highlighting their potential as a supplemental tool for 
analysing safety in regions with numerous abnormal events. These surrogate safety measures can 
effectively identify hotspots that are underrepresented by police-reported crash data, providing a more 
comprehensive picture of road safety. 
 
The study found that higher penetration rates of GPS-equipped vehicles provided broader data 
representativeness, which in turn aided more effective traffic management. The Residual Physics-
Informed Neural Network (Res-PINN) model proposed in the study significantly improved traffic state 
estimation using limited connected vehicle data, particularly when combined with transfer learning 
techniques. This approach demonstrated lower error rates and a closer resemblance to real-world traffic 
conditions, making it a powerful tool for accurate traffic state reconstruction and congestion 
management. 
 
The project also yielded significant insights into intersection efficiency and occupancy-based priority 
control. DRL models, particularly those enhanced with high-resolution connected vehicle data, 
outperformed traditional signal control methods, reducing average travel times and queue lengths. The 
enhanced computer vision models using an ensemble modelling approach, significantly improved conflict 
prediction accuracy. The study also identified distinct driving styles and behaviours at intersections, 
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highlighting variability based on vehicle type, signal phases, and time of day. Understanding these driving 
patterns is crucial for improving intersection safety and traffic flow efficiency. 
 
Reconstructed vehicle trajectories were used to estimate emissions. This exercise showcased a very 
important use case linked to trajectory data and demonstrated the advantage of this data as compared to 
traffic simulation for assessment and management of traffic emissions. The study found that while CO2 
emissions increased with surge in combustion-engine traffic volumes, the spatiotemporal distribution and 
intensity of emissions depend directly on traffic dynamics and speed profiles.  Access to trajectory data 
would be crucial for accurate measurement of emissions and strategic planning to optimise traffic 
management for reduced emissions. 
 
In conclusion, this project has successfully demonstrated the potential of integrating multi-source data 
for advanced traffic management applications. The findings highlight significant improvements in traffic 
efficiency, safety, and environmental sustainability through the use of connected vehicle data, telematic 
data from bicycles and other datasets. The methodologies developed provide a robust framework for 
future research and practical applications, offering substantial benefits for urban mobility and traffic 
management systems. This integrated approach paves the way for smarter, safer, and more efficient 
transportation networks. 
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